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ABSTRACT
Two-dimensional terahertz spectroscopy (2DTS) is a low-frequency analog of two-dimensional optical spectroscopy that is rapidly maturing
as a probe of a wide variety of condensed matter systems. However, a persistent problem with 2DTS is the long experimental acquisition
times, which prevent its broader adoption. A potential solution, requiring no increase in experimental complexity, is signal reconstruction via
compressive sensing. In this work, we apply the sparse exponential mode analysis (SEMA) technique to 2DTS of a cuprate superconductor.
We benchmark the performance of the algorithm in reconstructing terahertz nonlinearities and find that SEMA reproduces the asymmetric
photon echo line shapes at sampling rates as low as 10%, reaching the reconstruction noise floor at sampling rates beyond 20%–30%. The
success of SEMA in reproducing such subtle, asymmetric line shapes confirms compressive sensing as a general method to accelerate 2DTS
and multidimensional spectroscopies more broadly.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0276901

Multidimensional coherent spectroscopies1–3 have revolution-
ized our understanding of complex systems ranging from molec-
ular liquids4–7 to quantum-confined nanostructures8–10 and even
biological complexes.11–14 In recent years, two-dimensional tera-
hertz spectroscopy (2DTS)15,16 has brought the unique capabilities
of multidimensional techniques to condensed matter systems,17

in which many fundamental excitations can be found at low
energies.18,19 Recent such experiments have studied, for example,
ferroelectrics,20,21 ferromagnets,22,23 and even superconductors.24,25

However, the technique of 2DTS is still in a nascent stage, with insuf-
ficient acquisition efficiencies remaining an obstacle to studying
materials with small nonlinear optical signals.

At optical and infrared frequencies and in nuclear magnetic
resonance, there has been tremendous effort in accelerating multidi-
mensional spectroscopic techniques.26–28 Yet the need to accelerate

2DTS is even more pressing, since unique challenges such as long
data acquisition (with reported acquisition times reaching one week
for a single spectrum29) and potential degradation of terahertz gen-
eration over time30 restrict the range of applications. Currently, the
primary method for accelerating 2DTS is single-shot THz detec-
tion,31 where the entire THz waveform is captured simultaneously.
There are various methods to implement single-shot detection
schemes,32 but all of them inevitably increase experimental complex-
ity and have their unique trade-offs. Other methods of accelerating
2DTS are, therefore, desirable.

In contrast to increasing signal acquisition rate, an alterna-
tive approach to accelerating 2DTS is to reduce the requirements
for signal acquisition itself. For a signal sampled uniformly in time,
it is well known33 that the Nyquist criterion requires a minimum
sampling rate of twice the signal frequency. However, one may
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circumvent this limit by non-uniform sampling and subsequent sig-
nal reconstruction via compressive sensing algorithms.34–37 So far,
compressive sensing has been successfully demonstrated not only
in ultrafast spectroscopy38 but also in multidimensional NMR39 and
multidimensional optical spectroscopies.40–43 However, these tech-
niques have yet to be applied toward 2DTS, which stands to benefit
even more from acceleration. Compressive sensing has also not been
applied to asymmetric two-dimensional spectral line shapes, which
are frequently encountered in disordered systems43,44 and strong
vibronic coupling45,46 more generally. Here, we address these two
open problems and implement the sparse exponential mode analy-
sis (SEMA) method based on dictionary learning, which has been
described in detail elsewhere.41,42 In short, the SEMA algorithm
approximates the signal as a superposition of multiple sparse com-
ponents, each characterized by frequency, damping coefficient, and
complex amplitude. In the code, the dictionary matrix A is com-
posed of products of sparse signals in two dimensions, expressed
as damped exponentials, exp(j2πt1ω1 − t1β1) ∗ exp(j2πt2ω2 − t2β2),
where t1 and t2 are sampling times, ω1 and ω2 are frequencies, and β1
and β2 are damping coefficients. We first initialize a dictionary that
covers only the frequency dimension, with damping coefficients set
to zero. This dictionary is then iteratively optimized by updating fre-
quencies and damping coefficients based on residuals. Signal space
coverage is ensured by the initial frequency range and dynamic grid
optimization. We choose the SEMA method as it not only requires
fewer data points than traditional compressive sensing methods

such as LASSO and matching pursuit, but also can reconstruct both
resonance frequencies and linewidths simultaneously.

As an ideal test case, we apply SEMA toward reconstructing the
2DTS spectra of the Josephson plasma resonance47 in the optimally
doped cuprate superconductor La1.83Sr0.17CuO4 (LSCO), which has
a plasma frequency fp = 2 THz. The experiment is schematically
shown in Fig. 1(a), in which 2 THz excitation pulses (EA and EB)
polarized along the c-axis of LSCO drive interlayer supercurrents
that radiate a nonlinear optical signal ENL as a function of inter-pulse
time delay τ and electro-optic sampling (EOS) time t. In particu-
lar, we measure the “Josephson echo” signal, which has previously
been used25 to measure disordered superconductivity in this same
compound, exhibiting an asymmetric “almond-shaped” spectral line
shape. Traditional compressive sensing methods fail to accurately
reconstruct such complex features at low sampling rates,41 and we
thus chose it specifically to test the capabilities of SEMA. Briefly,
the echo nonlinearity arises from initial supercurrents driven by EB
that subsequently undergo a time-reversal operation induced by EA,
resulting in its oppositely signed coordinates in frequency space.43

The underlying wavevector phase-matching condition that isolates
the echo signal has been described elsewhere.25

In Fig. 1(b), we describe the two time-domain acquisition
schemes for generating a 2DTS spectrum. On the left, we depict con-
ventional Fourier sampling of ENL with a uniform sampling grid,
where the time step determines the frequency bandwidth and the
time range determines the frequency resolution. On the right, we

FIG. 1. Random sampling in two-dimensional terahertz
spectroscopy. (a) Schematic of the 2DTS measurement,
in which two excitation fields EA and EB cooperatively drive
nonlinearities of the Josephson plasma resonance in opti-
mally doped La1.84Sr0.17CuO4. The resulting supercurrents
radiate a nonlinear electric field ENL, which is measured
as a function of the inter-pulse time delay τ and the lab-
oratory time t as shown in the inset. (b) Two possible
acquisition schemes of the nonlinear signal ENL, where
sampled data points are indicated by blue dots. (Left) A
uniform sampling grid appropriate for Fourier transform
into the frequency-domain. (Right) Non-uniform sampling
appropriate for reconstruction via compressive sensing
algorithms.
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depict sparse sampling of ENL, where the signal is randomly sampled
across the same temporal range, generally with far fewer data points.
In this case, as shown by Candès et al.,35 the Nyquist criterion may
be circumvented using appropriate reconstruction algorithms.

We begin by measuring the Josephson echo signal at a tem-
perature of 6 K (the lowest temperature chosen to maximize peak
asymmetry) via Fourier sampling, as shown in Fig. 2(a). The sig-
nal is sampled over time ranges of 6.9 and 7.95 ps along τ and t,
respectively (chosen to cover the entire signal decay), with identi-
cal time steps of 150 fs, resulting in 46 × 53 = 2438 total sampled
data points before zero-padding by twice the sampling size7 and a
total acquisition time of ∼3 h. We then use the SEMA algorithm
to reconstruct the signal, which fits a sparsely sampled dataset to
a dictionary of frequencies and spectral linewidths. This dictionary
is iteratively refined, until convergence is reached41,42 (note that the
algorithm need not be trained on a dataset before its reconstruction).
To investigate the accuracy of the SEMA reconstruction method,

we non-uniformly sample a fraction of the Fourier-sampled dataset
as an input to our compressive sensing algorithm for subsequent
reconstruction. The reconstructed time-domain signal is shown in
Fig. 2(b) for representative sampling of 5% and 15% of the original
dataset, which exhibit qualitative differences. While the reconstruc-
tion with 5% of the data can be seen to reproduce the oscillation
frequencies and their relative phase along each time axis, the recon-
struction of 15% more accurately reproduces the oscillation lifetimes
of the Josephson echo signal. To more easily infer the reconstruction
accuracy, it is instructive to examine the spectral line shapes of the
Josephson echo signal in the frequency domain.

In Fig. 3, we show the 2DTS spectra obtained by Fourier
transform of the time-domain data in Fig. 2 into the frequency
domain. Fourier transform of the original Fourier-sampled signal
(with zero-padding by twice the sampling size) returns the asym-
metric “almond-shaped” peak shown in Fig. 3(a), indicative of a
disordered Josephson plasma resonance as discussed in Ref. 25. In

FIG. 2. Time-domain compressive sensing. (a) Fourier-sampled Josephson echo signal (at a sample temperature of 6 K) in the time domain. (b) Reconstructions of the
Josephson echo signal at the same time coordinates {τ , t} from sparse sampling of 5% and 15% of the data points in (a). More accurate reconstruction is qualitatively
evident with increasing sampling percentage.

FIG. 3. Frequency-domain compressive sensing. (a) Reference 2DTS spectrum acquired by Fourier transform of the Fourier sampled time-domain data in Fig. 2(a).
(b) Reconstructed 2DTS spectra acquired by Fourier transform of the reconstructed time-domain data in Fig. 2(b). At 5% sampling, a symmetric peak is observed, while
increasing sampling percentage retrieves the asymmetric “echo” line shape.
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comparison, Fourier transform of the reconstructed time-domain
data reveals a strong dependence on the percentage of data used
for reconstruction. The reconstruction of 5% exhibits a cross-shaped
peak typical of a homogeneously broadened resonance,43 while the
reconstruction of 15% qualitatively reproduces the true asymmetric
line shape.

We now examine the accuracy of the reconstructed
two-dimensional line shapes more closely. Slices of both the
Fourier-sampled and reconstructed 2DTS spectra are taken along

FIG. 4. Reconstructed line shapes. Comparison of cross sections taken (indi-
cated inset) from the original reference 2DTS spectrum with those taken from the
2DTS spectra reconstructed from (a) 5% sampling and (b) 15% sampling.

the “diagonal” (∣ ft∣ = ∣ fτ ∣) and perpendicular “cross-diagonal”
directions used to characterize intrinsic and disorder broadening.43

The comparison between slices taken from the full Fourier-sampled
spectrum and those taken from the 5% reconstruction is shown in
Fig. 4(a), where we see that the reconstruction is less accurate and
returns similar linewidths in both directions. The reconstruction
further misses the non-Lorentzian tails of the resonance entirely.
However, as shown in Fig. 4(b), increasing the sampling percentage
to 15% results in a reconstruction that accurately reproduces not
only both linewidths but also subtle details of the fully sampled
spectral line shapes.

Finally, we quantify the reconstruction accuracy by considering
the residual error of each reconstruction. We obtain residual maps of
the 2DTS spectra by subtracting the reconstructed spectra from the
fully sampled spectra, which are then normalized to the maximum
amplitude of the fully sampled spectra and are plotted in Fig. 5(a).
We note that the residual map of the 5% sampling spectrum exhibits

FIG. 5. Reconstruction residual error. (a) Residual error of the reconstructions
found by subtracting the reference spectrum from the reconstructed spectra at
sampling percentages of 5% and 15% and normalizing to the maximum amplitude
of the reference spectrum. (b) Integrated error found by summing the (unnormal-
ized) magnitude of the residual error across the region marked by the blue dashed
box in the left panel of (a) and normalizing to the integrated value of the reference
spectrum across the same frequency range. The error for each sampling percent-
age shown is the average of 100 reconstructions. The indicated reconstruction
noise floor is found by performing the same procedure for the region marked by
the gray dashed box in the left panel of (a), in which no signal is present, and
scaling by an area factor of 4.
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a significant structure, with positive (red) errors near the peak cen-
ter and negative (blue) errors in the wings of the peak. However, the
residual map of the 15% sampling spectrum exhibits a much weaker
structure with only negative (blue) errors in the wings remaining
apart from the reconstruction noise. This is supported by the inte-
grated residual error shown in Fig. 5(b), which approaches the noise
floor with increasing sampling percentage as expected. Beyond 30%
sampling, the reconstruction accuracy at this sampling percentage is
primarily limited by the measurement signal-to-noise ratio.

Having demonstrated compressive sensing as a viable method
to reconstruct 2DTS spectra, we now turn to an outlook for its
application to real experimental scenarios. In the results presented
here, we find an approximate lower limit of 10% sampling for accu-
rate reconstruction (5% error above the reconstruction noise floor)
of the 2DTS spectrum and further reach the reconstruction noise
floor above 20%–30% sampling. However, we emphasize that the
Josephson echo signal considered here exhibits a more complicated
spectral line shape than most other 2DTS signals reported to date.
For reconstructing symmetric “non-rephasing” signals, signals from
systems with multiple resonances/coupling, or signals from homo-
geneously broadened systems more generally, we expect these limits
on the sampling percentage to be relaxed even further. Finally, we
emphasize that these sparse sampling techniques can be applied to
data acquired via any experimental protocols for 2DTS. Combining
such sparse optimization with other techniques such as single-shot
THz detection31 will therefore bring a new level of versatility to
2DTS techniques, enabling the study of systems with weak optical
nonlinearities and fragile systems sensitive to external perturba-
tion. Further algorithmic developments and constrained random
sampling48 may also yield additional performance improvements.

The supplementary material contains details on the com-
pressive sensing algorithm, expanded reconstruction data, and the
experimental setup that was used to generate data in this paper.
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