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Abstract
Recently, colloidal perovskite nanocrystals (PNCs) have emerged as an exciting material platform
for optoelectronic applications due to their combination of facile synthesis routes, quantum size
effects, and exceptional optical properties among other favorable characteristics. Given the focus
on their optoelectronic properties, spectroscopic characterization of PNCs is crucial to rational
design of their structure and device implementation. In this Perspective, we discuss how
multi-dimensional coherent spectroscopy (MDCS) can resolve exciton dynamics and circumvent
inhomogeneous broadening to reveal underlying homogeneous spectral lineshapes. We highlight
recent applications of MDCS to PNCs in the literature, and suggest compelling problems
concerning their microscopic physics to be addressed by MDCS in the future.

1. Introduction

The systematic synthesis and study of semiconductor nanocrystals spans four decades to early studies at the
end of the 20th century [1–4]. Today the field continues to flourish, with new nanocrystal synthesis routes
and architectures being discovered at a rapid pace. Among the most exciting recent developments is the
synthesis of colloidal lead-halide perovskite nanocrystals (PNCs) [5], which have a perovskite lattice
structure with an APbX3 composition (where A is an organic or inorganic cation and X= Cl, Br, or I). PNCs
combine the properties of colloidal nanocrystals, such as quantum size effects and versatile surface chemistry,
with advantages inherited from their bulk counterparts. For example, the ionic bonding character [6] and
defect-tolerant nature [7] of bulk lead-halide perovskites have translated to quantum efficiencies in PNCs
nearing unity without the complication of shell over-coatings (necessary for comparable quantum
efficiencies in traditional metal chalcogenide and pnictide nanocrystals [8]).

Despite their unique characteristics PNCs are not immune to many drawbacks of colloidal nanocrystals,
most notably size and shape dispersion in ensembles. Because their exciton energy level structure is affected
by quantum confinement, variation in nanocrystal geometry results in a concomitant variation of absorption
and emission wavelength of electronic transitions. In such a situation optical lineshapes are broadened
beyond the single-particle (homogeneous) linewidths, a phenomenon termed inhomogeneous spectral
broadening. Inhomogeneous broadening is not only deleterious in many practical applications of PNCs, for
example in lasing [9] and transport in superlattices [10], but also hampers study of their fundamental
optoelectronic properties that manifest in homogeneous optical lineshapes.

To circumvent inhomogeneous broadening in spectroscopic studies of PNCs, single-nanocrystal
spectroscopies are most commonly employed [11]. Such techniques isolate the homogeneous luminescence
spectra of individual nanocrystals, albeit with significant drawbacks such as spectral diffusion and limited
signal-to-noise ratio. Perhaps the most limiting aspect of single-nanocrystal spectroscopies however, is that
lineshapes can vary dramatically between individual particles of an ensemble. A technique capable of
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resolving ensemble-averaged homogeneous lineshapes is multi-dimensional coherent spectroscopy
(MDCS) [12], an optical analogue of nuclear magnetic resonance spectroscopy that has found applications
in numerous disordered systems ranging from molecular liquids [13, 14] to atomic gases [15, 16], and even
photosynthetic bacteria [17, 18].

The experimental implementations of MDCS and its application to semiconductor nanostructures have
been previously discussed in dedicated reviews on these subjects [19–23]. However, it is only recently that
MDCS has been applied to PNCs. The purpose of this Perspective is therefore to highlight some of the first
studies on PNCs by MDCS in recent years and to outline some compelling questions that MDCS is uniquely
poised to answer, with the hope of stimulating further activity in this burgeoning field.

2. Multi-dimensional coherent spectroscopy

Multi-dimensional coherent spectroscopy (MDCS) is a general class of nonlinear spectroscopic techniques
that resolves a cross-section of, or even an entire, (complex-valued) nonlinear optical response S(n) of order
n. Below, we describe some experimental implementations of MDCS and two common types of
multi-dimensional spectra that are useful in the context of colloidal nanocrystals.

2.1. Experimental implementation
In general, measurement of a system’s optical response function requires excitation by light. Measurement of
a frequency-domain response function may be accomplished by excitation with continuous-wave light
sources of variable frequency or by excitation with pulsed light sources of variable time-delays. Fourier
transform spectroscopy methods with pulsed excitation are far more commonplace, which are therefore
assumed below.

There are two general requirements for experimental implementations of MDCS. First, inter-pulse
time-delays that involve coherence evolution must be stable to within a fraction of the excitation light period.
Second, a nonlinear optical response must be separated from the linear optical response, which is stronger at
low excitation fluences. This second requirement may be accomplished in either a non-collinear excitation
geometry by wave-vector phase-matching (see supplemental information available online at
stacks.iop.org/JPMATER/5/021002/mmedia) [24] or in a collinear excitation geometry by phase-cycling [20].

Most commonly, MDCS measures a third-order optical response S(3) by using three excitation fields to
generate a four-wave mixing signal. The dynamics induced by each excitation pulse are usually interpreted in
a perturbative framework, in which each field interaction induces a change in a system’s density matrix.
These changes altogether constitute so-called quantum pathways, which provide a physical interpretation of
the peaks observed in multi-dimensional spectra. As illustrated in figure 1(a), the first pulse (A) generates a
coherent superposition between the ground and an optically active excited state, which oscillates at the
transition energy ℏωτ . The second pulse (B) then converts this interband coherence into either a population
state that decays according to its relaxation rate or an intraband coherence between two neighboring states
within a ground or excited state manifold [25] that oscillates at the intraband energy splitting ℏωT. The last
pulse (C) then generates a final interband coherence that oscillates at its respective transition energy ℏωt and
radiates an FWM signal. We leave further description of the analytical expressions to other more detailed
texts [26].

If the phase-stability criteria introduced above is satisfied, the time-domain four-wave mixing signal may
be measured and Fourier transformed along two or more time axes to generate a multi-dimensional
spectrum. Although many different multi-dimensional spectra are possible depending on both the chosen
pair of time axes and the pulse time-ordering, we describe below two types of spectra that have proven
particularly useful in the study of PNCs, termed one-quantum and zero-quantum spectra. A model system
comprised of two coupled inhomogeneously broadened transitions, one of resonance energy ℏω1 and
another of resonance energy ℏω2 (shown in figure 1(b)), is simulated to demonstrate the basic features in
multi-dimensional spectra of disordered level systems.

2.2. One-quantum spectra
One-quantum spectra are obtained by Fourier transform along the time-delays {τ, t}. Interband coherence
evolution occurs along these two delays, as represented by the high-frequency oscillations in figure 1(a), and
therefore one-quantum spectra correlate absorption and emission dynamics of a given material system. In
the case of rephasing one-quantum spectra [19, 23], coherences evolve with inverse phase between delays τ
and t (reflected in negative absorption energy ℏωτ ), which is assumed henceforth. A schematic one-quantum
spectrum (simulated for the model system in figure 1(b)) is shown in figure 1(c), which illustrates two
unique capabilities:
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Figure 1. (a) Generic pulse sequence used in MDCS measurements to generate a nonlinear optical signal. In the case of four-wave
mixing, the dynamics induced by each pulse may be interpreted perturbatively, in which pulses A and C generate interband
coherences that oscillate at the transition resonance energy, while pulse B can either generate a population state that undergoes
relaxation or an intraband coherence that oscillates at the energy difference between two states of a manifold. (b) Model system
simulated in ((c), (d)) that is comprised of two transitions of resonance energy ℏω1 and ℏω2, both of which are inhomogeneously
broadened. (c) One-quantum and (d) zero-quantum spectra simulated for the model system in (b), in which the axes are
highlighted according to their respective Fourier conjugate axis in (a).

• Two peaks are present at |ℏωτ |= |ℏωt| (indicated by the dashed black line), which correspond to absorption
and emission involving identical photon energies. Two additional peaks are present at |ℏωτ | ̸= |ℏωt|, which
then correspond to absorption and emission involving different photon energies. One-quantum spectra
therefore reveal coupling between different optical transitions through the presence of the latter so-called
cross-peaks.

• The peaks are elongated along the |ℏωτ |= |ℏωt| direction, which illustrates the presence of two distinct
broadening mechanisms. Namely, homogeneous broadening due to the single-particle oscillator damping
and inhomogeneous broadening due to disorder (see figure 1(b)) are projected in orthogonal directions
in a one-quantum spectrum [27]. In contrast, a homogeneously-broadened resonance (absent of disorder)
would manifest as a completely symmetric peak along both axes. It should also be noted that, unlike the
homogeneous lineshapes measured by single-nanocrystal photoluminescence, the lineshapes measured by
MDCS for time-delay T≈ 0 reflect the exciton transition in the absence of population dynamics (such as
Stokes shift and spectral diffusion) following optical absorption.

We remark that a one-quantum spectrum, which plots the optical response cross-section S(3)(ωt,T,ωτ ),
may be viewed as a generalized pump-probe response that resolves both quadratures of the complex optical
response with pump spectral resolution limited only by Fourier transform parameters. For example, a
transient absorption measurement is expressed in terms of the optical response function as [28, 29]:

∆A(ωt,T)≈ Re

ˆ ∞

−∞
Epump(ωτ )S

(3)(ωt,T,ωτ )dωτ , (1)

where the only approximation is that of an infinitely broad probe pulse spectrum (which approximates the
usual case of a white-light continuum probe pulse). An equivalent transient absorption spectrum may
therefore be extracted from a one-quantum spectrum by windowing the optical response along the vertical
absorption axis by the excitation spectrum Epump and subsequent projection onto the horizontal emission
axis.

2.3. Zero-quantum spectra
Zero-quantum spectra are obtained by Fourier transform along the time-delays {T, t}. Both population
relaxation and intraband coherence evolution occurs along the delay T, as represented by the solid and
dashed curves in figure 1(a), and therefore zero-quantum spectra correlate these dynamics with subsequent
optical emission along the delay t. A zero-quantum spectrum (simulated for the same model system in
figure 1(b)) is shown in figure 1(d), which illustrates how population dynamics and intraband coherences
manifest in frequency space.

• Population relaxationmanifests as peaks at zeromixing energy (ℏωT = 0). Thewidths of each peak along the
horizontal emission energy direction reflect the resonance energy distribution of each respective resonance,
while the widths along the vertical mixing energy direction reflect their population relaxation times.
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• Intraband coherence evolution manifests as peaks at non-zero mixing energy (ℏωT ̸= 0), specifically at the
energy splitting between the two states involved. Thewidth along the verticalmixing energy direction reflects
the intraband coherence dephasing time while tilt of a sideband (in the inhomogeneously broadened case)
may reveal dispersion of an intraband energy splitting.

We note that the spectrum in figure 1(d) is simulated for perfectly correlated inhomogeneity between the
two transitions (a good assumption for most nanocrystal systems). If this is not the case, vertical mixing
energy width then gains a contribution from disorder of the intraband energy splitting ℏω12.

2.4. MDCS of colloidal nanocrystals
MDCS of colloidal nanocrystals may, at the most basic level, be understood in terms of dipole transitions
between discrete energy levels arising from three-dimensional quantum confinement. While this suggests a
close correspondence between electronic excitations in molecular systems and excitons in colloidal
nanocrystals, the physics revealed in multi-dimensional spectra suggest a more nuanced description.

Indeed, much of the physics of colloidal nanocrystals is inherited from their bulk parent compounds.
Acoustic [30] and optical phonon modes [31] of a crystal lattice couple to excitons in nanocrystals, just as in
bulk semiconductors. Especially for colloidal nanocrystals of extended dimensions such as nanoplatelets,
many-body effects can also play a primary role in their optical properties [32].

It should be emphasized however, that most of the new physics introduced in colloidal nanocrystals
possess direct analogues in the physics of molecular systems. For example, the limited size of nanocrystals
gives rise to discrete vibrational modes confined to their geometry [33], reminiscent of molecular bond
vibrations. Excitons in nanocrystals also experience a fluctuating energetic environment as in molecular
liquids, whether due to solvation dynamics [34] or charge migration [11]. Multi-dimensional spectra of
colloidal nanocrystals may therefore be understood using intuition borrowed from the physics of both bulk
semiconductors and molecules.

2.5. Limitations of MDCS
We conclude this section by discussing possible limitations of MDCS compared to conventional linear
spectroscopies.

• To perform linear spectroscopies only a single excitation light source and direct, incoherent signal meas-
urement by a photodetector is required. Experimental realization of MDCS is more complex, as two/three
excitation pulses must be guided to the sample with variable, phase-stable time-delays, and the generated
nonlinear optical signal is then combined with a separate local-oscillator pulse for phase-sensitive detection.

• Excitation fields that are sufficiently high to generate a nonlinear optical response are required, which may
near damage thresholds for certain materials.

• The spectral content of each excitation pulse determines possible features in resultant multi-dimensional
spectra. Sufficient spectral bandwidth is therefore required for broad peak linewidths or large energy separ-
ations between resonances.

3. Interband dynamics

Interband dynamics play a primary role in optoelectronic applications of PNCs, which encompass optical
absorption/emission as well as charge/energy transfer following photoexcitation. As discussed in the previous
section, one-quantum spectra probe these dynamics by correlating the photon energy of initial optical
absorption with the photon energy of subsequent optical emission. In this section we discuss some
representative studies of interband dynamics in PNCs using MDCS.

3.1. Exciton homogeneous linewidth
In one-quantum spectra, homogeneous and inhomogeneous resonance lineshapes are projected in
orthogonal directions [27]. MDCS is therefore capable of extracting the ensemble-averaged homogeneous
linewidth of exciton resonances in PNCs, even in the presence of strong inhomogeneous broadening. To this
end, Liu et al recently applied MDCS to CsPbI3 nanoplatelets at cryogenic temperatures [32]. As shown in
figure 2, one-quantum spectra of 2-layer and 3-layer nanoplatelets exhibit Lorentzian homogeneous
lineshapes reflecting Markovian (memory-less) exponential dephasing with dramatically different
homogeneous and inhomogeneous linewidths. Extrapolating the homogeneous linewidth to
room-temperature, these measurements [32] suggested that thin (2-layer) nanoplatelets were
homogeneously-broadened at room-temperature while increasing out-of-plane thickness violates this
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Figure 2. ((a), (c)) Magnitude one-quantum spectra of (a) three-layer and (c) two-layer CsPbI3 nanoplatelets in glass at the
indicated temperatures. ((b), (d)) Cross-diagonal slices of the (b) three-layer and (d) two-layer one-quantum spectra centered at
2045 and 2113 meV, respectively. The cross-diagonal slice location for the 10 K slice in (b) is indicated by the white dashed arrow
in (a). Experimental data and line shape fits (for Lorentzian lineshapes corresponding to exponential dephasing) are plotted as the
shaded area plots and dotted lines, respectively. Apdated with permission from [32]. Copyright (2021) American Chemical
Society.

common assumption in nanoplatelets [35, 36]. In addition to elucidating homogeneous broadening
mechanisms via temperature- and excitation fluence-dependent measurements, the homogeneous linewidth
was further resolved as a function of exciton resonance energy to inform the effect of variations in
nanoplatelet geometry. Such an analysis provides a unique view into the effects of quantum confinement on
excitons in PNCs, a contentious topic in itself [37].

Similar measurements have also been performed by Yu et al [38] on CsPbBr3 nanocubes, which revealed
exciton-phonon coupling to acoustic vibrational modes to be the dominant homogeneous line-broadening
mechanism. This conclusion is similar to what was found for CsPbI3 nanoplatelets [32]. In contrast,
increasing excitation fluence was found to have a minimal effect on the measured homogeneous linewidth,
which is not the case for CsPbI3 nanoplatelets [32], highlighting the importance of nanocrystal
dimensionality on exciton-exciton scattering in PNCs.

3.2. Exciton fine-structure
Exciton fine-structure states in PNCs share a common ground state, and therefore lead to cross-peaks in
one-quantum spectra. For inhomogeneously-broadened ensembles, these cross-peaks are elongated into
sidebands that inform the fine-structure energy splittings and dephasing rates.

An interesting aspect of the exciton fine-structure of PNCs lies in their orthogonal linear transition
dipole moments, which allow for polarization-selective excitation of individual states in the triplet manifold.
Thus far, polarized fine-structure emission has primarily been observed in single-nanocrystal spectroscopies
[39, 40], which suffer from limited signal-to-noise ratio and variation between individual nanocrystals. With
polarization-resolved MDCS however, the fine-structure selection rules are preserved in ensemble
measurements even in the presence of nanocrystal orientation disorder [41]. Such an experiment was
recently performed by Liu et al on CsPbI3 nanocubes, in which one-quantum spectra were acquired with two
different excitation polarization schemes termed co-linear and cross-linear (shown in figure 3(a)). In the
spectra shown in figure 3(b), dramatically different lineshapes are observed between the two
polarization schemes due to enhancement and suppression of different fine-structure transitions. The
polarization-dependent lineshapes were then used to fit dephasing times between the different triplet state
transitions and to infer a partially-bright triplet exciton band-edge [42].

We finally mention that exciton fine-structure may also manifest in one-quantum spectra as coherent
dynamics during the time-delay T. In exemplary measurements of MAPbBr3 nanocrystals in a strongly
quantum-confined size regime, Wang et al reported coherent oscillations of one-quantum spectra with
varying delay T [43]. Though the nature of these oscillations could not be ascertained as vibronic or purely
electronic, low-temperature measurements were proposed as a potential route to resolve this ambiguity.
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Figure 3. (a) Excitation pulse sequence and excitation polarization schemes in which double-sided arrows in circles denote the
polarization of each pulse. Pulses A and C are horizontally polarized, and pulse B is either horizontally or vertically polarized,
which corresponds to an emitted signal of either horizontal or vertical polarization respectively. (b) Magnitude one-quantum
spectra of CsPbI3 nanocrystals in glass at 4.6 K with co-linear and cross-linear excitation respectively. From [42]. Adapted with
permission from AAAS.

3.3. Exciton–phonon coupling
In both PNCs and nanocrystals more broadly, exciton-phonon coupling constitutes a primary mechanism of
coherence dephasing [44] and energy transfer [45]. From a spectroscopic perspective exciton-phonon
coupling manifests in two primary ways, namely in homogeneous spectral lineshapes and oscillatory
dynamics due to coherent nuclear motion [46].

To be more precise, homogeneous lineshapes of exciton resonances are comprised of three
components: (1) zero-phonon lines representing an exciton resonance without phonon involvement
[44, 45], (2) non-Lorentzian phonon pedestals due to inelastic scattering with phonons spanning a
continuous range of eigenenergies (i.e. acoustic vibrations) [30], and (3) phonon sidebands (replicas) due to
inelastic scattering with phonons of discrete eigenenergies (i.e. optical or quantum-confined vibrations)
[47]. Broadening of the zero-phonon line with temperature then informs elastic scattering with phonons of
both discrete and continuum eigenenergies. Indeed, recent publications by Yu et al [38] and Liu et al [32]
have reported zero-phonon line broadening dominated by acoustic-phonon scattering in CsPbBr3
nanocubes and CsPbI3 nanoplatelets respectively. While no clear signatures of acoustic phonon pedestals or
sidebands were observed in the nanoplatelet spectra [32], more complex lineshapes are evident in the
one-quantum spectra of both CsPbBr3 [38] and CsPbI3 [42] nanocubes that indicate inelastic scattering
channels involving many vibrational modes. Dimensionality thus plays a primary role in determining
exciton-phonon coupling in PNCs [48].

Complementary information may also be obtained by MDCS about the electronic dynamics that arise
from exciton-phonon coupling. During the intermediate time-delay T, exciton-phonon coupling can give
rise to coherent oscillations at characteristic vibrational frequencies. These oscillations may be thought of as
vibrational coherences on either a ground or an excited electronic potential energy surface, with their own
vibronic dephasing times. Recently Zhao et al reported T-dependent one-quantum spectra of CsPbBr3
nanocubes, in which coherent oscillations were observed of the exciton resonance at room temperature [49].
As shown in figure 4, vibrational coherences on the ground and excited electronic potential energy surfaces
were separated in frequency space according to their ground-state bleach and stimulated-emission quantum
pathways respectively. We emphasize that this separation of ground and excited state coherences would not
be possible via other techniques such as transient absorption spectroscopy [50], and requires the full
complex-valued optical response.

3.4. Excited-state dynamics
The dynamics that evolve along the T time-delay also include incoherent processes such as spectral diffusion
and population relaxation. Spectral diffusion dynamics, which refer to resonance energy fluctuations in time
[11], are of particular interest on the ultrafast timescale as a microscopic origin of coherence dephasing [31]
and spectral line-broadening. In an interesting report from Seiler et al [51] the spectral dynamics of CsPbI3
nanocrystals were resolved as a function of T and compared with those of conventional CdSe nanocrystals
and a molecular dye (shown in figure 5). Broadening of the homogeneous linewidth with increasing T, a
direct measure of spectral diffusion [52, 53], was then used to quantify the polaronic dynamics in PNCs.
While the diffusive dynamics were dissimilar to those of covalently-bonded CdSe nanocrystals, in which the
homogeneous linewidth was coherently modulated at the LO-phonon frequency, they were reminiscent of
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Figure 4. (a) Real-quadrature one-quantum spectrum of a solution sample of CsPbBr3 nanocrystals. (b) Real and imaginary
quadratures of the complex-valued one-quantum spectra as a function of T at the position indicated by the black square in (a).
(c) Feynman diagrams representing stimulated-emission (SE) and ground-state bleach (GSB) quantum pathways that lead to
vibronic oscillatory dynamics. The intermediate components of the SE and GSB Feynman diagrams that evolve during T,
indicated by the dashed red and green boxes respectively, correspond to negative and positive evolution frequencies. (d) Fourier
transform of the complex oscillations shown in (b) which separates the SE and GSB quantum pathways in the negative and
positive frequency quadrants respectively. Adapted from [49], with the permission of AIP Publishing.

spectral diffusion in the molecular dye Nile Blue. Time-resolved measurements of the homogeneous
linewidth enabled by MDCS thus provide an interesting conceptual analogy between polaron formation and
solvation dynamics.

Beyond spectral diffusion dynamics, dynamically-varying spectral weight of peaks in one-quantum
spectra may be ascribed to incoherent charge or energy transfer between resonances. In a recent report by Yu
et al the incoherent relaxation dynamics of hot carriers to the band-edge exciton state were measured in this
way with femtosecond (<10 fs) time-resolution [54]. Relaxation times were measured for a range of
nanocrystal sizes, through which phonon-bottlenecking [55] was directly inferred with increasing quantum
confinement. Crucial to this observation was also the combination of high temporal and energy resolution
possible in Fourier transform spectroscopies such as MDCS. In contrast, conventional pump-probe
techniques such as transient absorption spectroscopy suffer from a trade-off between temporal and energy
resolution due to the Fourier transform limit of excitation pulses.

4. Intraband dynamics

In the previous section, we have described how one-quantum spectra exhibit both coherent and incoherent
dynamics along the time-delay T. If these dynamics are of particular interest, it is often advantageous to
acquire zero-quantum spectra (rather than a full three-dimensional dataset) to correlate the dynamics
during T with the subsequent optical emission. In this section we focus specifically on studies of intraband
coherences in PNCs using MDCS, which can be of either vibrational or electronic origin.

4.1. Vibrational intraband coherences
It is shown in figure 4 that electron-phonon coupling involving vibrations of discrete energy may give rise to
coherent oscillations along T, a form of vibrational intraband coherence. In zero-quantum spectra, these
oscillations manifest as sidebands that correlate the vibronic energy and lifetime with the exciton emission
energy. In figure 6(a), a zero-quantum spectra of CsPbI3 nanocrystals is shown for co-linear excitation, in
which three sidebands are observed at mixing energies ℏωT =−3.3,−5.5, and−14.9 meV due to coupling to
three distinct vibrational modes. We note that the asymmetry of these sidebands, referring to a lack of
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Figure 5. (a)–(c) Slices obtained for a given absorption energy ℏωτ in one-quantum spectra as a function of emission energy ℏωt,
which may be considered pseudo-transient absorption spectra. The (a) CsPbI3 spectra are shown for ℏωτ = 1.82 eV. The
(b) CdSe and (c) Nile Blue pseudo-TA maps are both shown for E1= 1.95 eV. ((d)–(f)) Extracted cross-diagonal linewidths from
the 2D spectra shown as a function of T for (d) CsPbI3, (e) CdSe, (f) and Nile Blue as indicated. Adapted from [51]. CC BY 4.0.

Figure 6.Magnitude zero-quantum spectra of CsPbI3 nanocrystals in glass at 20 K with (a) co-linear and (b) cross-linear
excitation respectively. From [42]. Adapted with permission from AAAS.

sidebands at positive mixing energy, is a signature of their vibrational nature [31, 46, 56]. Intraband
coherences of purely electronic origin would instead exhibit symmetric sidebands of both oscillation
polarities, which is discussed below.

4.2. Electronic intraband coherences
In PNCs, structural phase transitions away from the high-temperature cubic phase lift the degeneracy of the
triplet exciton states [57]. Superpositions of these non-degenerate fine-structure states, a form of electronic
intraband coherence, is of primary importance for many quantum coherent applications of PNCs such as
single-photon emission [58]. In figure 6(b), a zero-quantum spectra of the same CsPbI3 nanocrystals is
shown for cross-linear excitation, in which symmetric sidebands at±1.6 meV are observed that arise from
intraband coherences between two non-degenerate triplet exciton states. By measuring zero-quantum
spectra as a function of temperature and fitting the resultant lineshapes, Liu et al showed that these
intraband triplet coherences exhibit both a long coherence time of 1.36 ps (at a temperature of 20 K) and
minimal thermal dephasing [42]. These properties compare favorably to those of candidate materials [59] for
valleytronic applications [60], thus suggesting PNCs as a potential material platform for quantum
information processing.
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Figure 7. (a) Real-quadrature one-quantum spectrum of a film sample of CsPbBr3 nanocrystals acquired with a cross-circular
(σ+σ−σ+σ−) polarization scheme. A positive-valued single-exciton peak (labeled (I) is observed along the diagonal line
(|ℏωτ |= |ℏωt|) and a negative-valued biexciton peak (labeled II) is observed at an emission energy red-shifted by the biexciton
binding energy. (b) Extracted biexciton binding energy as a function of nanocrystal edge length, which exhibits a characteristic
1/r2 dependence. Adapted with permission from [61]. Copyright (2020) American Chemical Society.

5. Higher-order exciton complexes

In third-order MDCS that measures a four-wave mixing signal, certain quantum pathways termed
excited-state absorption involve emission from doubly-excited states. Biexciton resonances in PNCs thus
manifest in one-quantum spectra, specifically as negative peaks in the real-quadrature component [62]. This
was observed in a recent study by Huang et al which applied MDCS to CsPbBr3 PNCs in order to extract the
biexciton binding energy as a function of nanocrystal size and temperature [61]. As shown in the
real-quadrature one-quantum spectrum plotted in figure 7(a), a negative peak is observed that is red-shifted
along the emission energy axis (relative to the positive single-exciton peak located at |ℏωτ |= |ℏωt|) by a
value identical to the biexciton binding energy. This binding energy is plotted in figure 7(b) as a function of
nanocrystal size, which exhibits a characteristic 1/r2 dependence that is largely independent of temperature.
Finally, we note a related study by Zhao et al that revealed the mechanisms of optical gain in CsPbBr3
PNCs [49].

6. Final remarks

We have performed a brief overview of multi-dimensional spectroscopy (MDCS), and surveyed the literature
thus far applying MDCS to PNCs. Even as a burgeoning field, MDCS of PNCs has provided unique insights
into their microscopic physics such as intrinsic linewidths, triplet exciton fine-structure, polaron formation,
and biexciton resonances. However, these studies give merely a glimpse into the potential breadth of physics
in PNCs to be explored by this technique.

From our point of view, among the most interesting physics reveal themselves at cryogenic temperatures.
For example, population transfer between the triplet exciton states as well as between the neighboring dark
singlet state may be resolved in time using MDCS. At sufficiently low temperatures the coherence dephasing
dynamics also become non-Markovian, resulting in spectral lineshapes that reflect the spectral density of
exciton-acoustic phonon coupling [30].

Another interesting direction is in terms of action-based MDCS techniques that detect signals other than
coherent optical emission. For example, photoluminescence-detected MDCS [63] isolates the quantum
pathways leading to incoherent luminescence and can inform the mechanisms that limit the performance of
light-emitting devices. Photocurrent-detected MDCS [64] could also address many interesting questions
concerning transport and other collective phenomena in PNC superlattices [10, 65].

Lastly, the unique insight into multiple-exciton dynamics afforded by MDCS yields a rich area of
investigation. Biexciton fine-structure, and even higher-order exciton species such as triexcitons may be
directly characterized by MDCS [66]. The addition of an incoherent pre-pulse prior to each MDCS
measurement also introduces a host of new multiple-exciton phenomena that manifest in multi-dimensional
spectra. For example, a high-photon energy pre-pulse could excite hot-carriers which undergo impact
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ionization to generate multiple excitons. Varying a time-delay between this pre-pulse and a subsequent
MDCS measurement would then constitute a direct measurement of carrier multiplication in PNCs [67].
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