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Probing inhomogeneous cuprate 
superconductivity by terahertz Josephson 
echo spectroscopy

A. Liu    1,2  , D. Pavićević1, M. H. Michael    1, A. G. Salvador3, P. E. Dolgirev    4, 
M. Fechner    1, A. S. Disa    1,5, P. M. Lozano    2,6, Q. Li    2,6, G. D. Gu2, E. Demler3 & 
A. Cavalleri    1,7 

Inhomogeneities crucially influence the properties of quantum materials, 
yet methods that can measure them remain limited and can access only a 
fraction of relevant observables. For example, local probes such as scanning 
tunnelling microscopy have documented that the electronic properties 
of cuprate superconductors are inhomogeneous over nanometre length 
scales. However, complementary techniques that can resolve higher-order 
correlations are needed to elucidate the nature of these inhomogeneities. 
Furthermore, local tunnelling probes are often effective only far below 
the critical temperature. Here we develop a two-dimensional terahertz 
spectroscopy method to measure Josephson plasmon echoes from an 
interlayer superconducting tunnelling resonance in a near-optimally doped 
cuprate. The technique allows us to study the multidimensional optical 
response of the interlayer Josephson coupling in the material and disentangle 
intrinsic lifetime broadening from extrinsic inhomogeneous broadening 
for interlayer superconducting tunnelling. We find that inhomogeneous 
broadening persists up to a substantial fraction of the critical temperature, 
above which this is overcome by the thermally increased lifetime broadening.

Unconventional superconductivity in cuprates emerges when either 
electrons or holes are doped into the insulating parent compound. 
Because superconductivity is optimized far away from optimal stoi-
chiometric composition, disorder of the host lattice is unavoidable 
and may result in substantial electronic inhomogeneities1,2. Measure-
ments of the electronic properties of cuprates using scanning tun-
nelling microscopy3 reveal disorder of the superconducting gap on 
nanometre length scales4,5, whose variations are further correlated 
with the distribution of dopant atoms6. Yet the potential presence 
of co-existing and competing orders complicates the assignment 
of observables to superconductivity. Modern techniques based on 

tunnelling from a superconducting tip7 can now isolate the super-
conducting response8–11 but are still limited to sampling surfaces 
amenable to tip-based techniques and temperatures typically below 
that of liquid helium. Additional probes of the role of these inhomo-
geneities on the superconducting order parameter are therefore 
necessary to obtain a complete picture of the role of disorder in  
these materials.

The tunnelling resonance arising from Josephson coupling 
between adjacent superconducting CuO2 planes, the so-called Joseph-
son plasma resonance12,13, provides a direct measure of the supercon-
ducting order parameter and of the c-axis transport14,15. The Josephson 
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electric field ENL. The depicted nonlinear process is governed by a 
third-order optical response χφ

(3), with multiple frequency and wavevec-
tor components. These may be resolved in a two-dimensional (2D) 
spectrum21,22 (Fig. 1c) by Fourier transforming ENL along the inter-pulse 
time delay τ and the emission time t. So-called 2D spectroscopy has 
been implemented at terahertz frequencies in collinear excitation 
geometries to study a variety of material systems23–35, including super-
conductors more recently36–38.

Previous applications of 2D terahertz spectroscopy have all imple-
mented a collinear geometry, in which the excitation fields and nonlin-
ear signal emission all possess identical wavevectors. While convenient, 
such a collinear geometry cannot isolate specific nonlinearities and 
further precludes study of opaque materials. We therefore implement a 
non-collinear excitation geometry with which different components of 
χφ

(3), corresponding to different peaks in the 2D spectrum, are emitted 
in unique phase-matched directions (Fig. 1c).

The non-collinear phase-matching geometry is shown in Fig. 2a, in 
which two quantities are conserved. In addition to the momentum mag-
nitude determined by the Josephson plasma frequency, only in-plane 
momentum is conserved due to the interface39. For fixed excitation and 
detection geometry, the nonlinearity arriving at the detector may be 
chosen by rotating the sample and thereby the in-plane momentum of 
each excitation beam (Fig. 2b).

We demonstrate this principle in Fig. 2c on near-optimally doped 
La2−xSrxCuO4 (x = 0.17, LSCO), which exhibits a Josephson plasma reso-
nance with resonance frequency fp ≈ 2 THz at temperatures far below 
the phase transition (T ≪ Tc). All four components of χφ

(3) that radiate 
at the Josephson plasma frequency40,41 are resolved at their respective 
phase-matching conditions (described in Supplementary Section 2). 
In contrast to linear spectra, which exhibit broad features due to the 
presence of both normal and superconducting optical responses, 
the optical nonlinearities of superconducting carriers are orders of 
magnitude stronger than those of the normal carriers, resulting in 
sharp peaks that reflect solely the superconducting response. Here, 
we focus on the nonlinearity appearing at (ft, fτ) = (2, −2) THz, which 
corresponds to a terahertz frequency ‘Josephson echo’.

The advantage of Josephson echoes in measuring disorder is 
illustrated by Fig. 3, in which two cartoons of homogeneous and dis-
ordered interlayer tunnelling are shown in Fig. 3a. If intrinsic spectral 
broadening of the resonance (for example, due to quasiparticle screen-
ing) is comparable to a distribution of Josephson plasma frequencies 
(due to variations in the interlayer tunnelling response), comparable 
optical responses are observed by linear optical spectroscopy (simu-
lated comparisons between homogeneous and disordered spectra 
for reflectivity, loss function and optical conductivity are presented 
in Supplementary Section 6) and it is difficult to distinguish between 
these two physically distinct situations as shown in Fig. 3b.

This ambiguity is eliminated in a 2D spectrum, specifically in 
the spectral lineshape of the Josephson echo peak42. In the case of 
a homogeneous Josephson plasma resonance, the peak is symmet-
ric with identical peak widths along the two frequency axes. In the 
presence of disorder, however, the Josephson echo peak develops a 
marked asymmetry from projecting disorder line-broadening into an 
orthogonal direction from the intrinsic linewidth of the resonance. 
We emphasize that the Josephson echo peak is the only nonlinearity 
that separates intrinsic and extrinsic broadening mechanisms, which 
may be understood by referring to its frequency coordinates that are 
opposite in sign. Microscopically, this reflects an effective time-reversal 
operation induced by the second excitation pulse that cancels extrinsic 
dephasing due to disorder (that is, from a distribution of Josephson 
plasma frequencies).

Measured 2D spectra of the Josephson echo in LSCO are shown in 
Fig. 4 for increasing temperatures approaching Tc ≈ 36 K. At the lowest 
measured temperature of 6 K, the Josephson echo peak is asymmetric 
with a characteristic ‘almond’ shape that reveals a finite degree of 

plasma resonance has been extensively studied by linear spectroscopy, 
in which the c-axis reflectivity exhibits a pronounced plasma edge in 
the superconducting state (Fig. 1a). Van der Marel and Tsvetkov first 
pointed out16 that a distribution of Josephson plasma frequencies, 
reflecting disorder of the superconducting order parameter, manifests 
as a distortion of the Josephson plasmon loss function17. Correspond-
ing distortion of the reflectivity edge profile was then exploited by 
Dordevic et al.18 to quantify the underlying disorder in La2−xSrxCuO4.

However, this approach suffers from various shortcomings. For 
example, in ref. 18, the lineshape fits based on a two-fluid model are 
generally not completely constrained and require assumptions on 
both the normal fluid conductivity and the functional form of the 
plasma frequency distribution. Reliable fits are also only possible at 
low temperatures, in which a sharp plasma edge is observed.

To circumvent these limitations, techniques capable of resolv-
ing higher-order plasmon correlation functions are required. These 
higher-order plasmon correlations may be measured by nonlinear 
spectroscopy19,20, an example of which is shown schematically in Fig. 1b 
where two excitation fields EA and EB cooperatively generate a nonlinear 
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Fig. 1 | Linear and nonlinear spectroscopies of plasma resonances.  
a, A schematic of a linear reflectivity measurement, in which an incident field 
Ein induces a linear response χφ

(1). The co-propagating reflected field Erefl and the 
linear response χφ

(1) interfere to produce a characteristic edge in the reflectivity 
shown (inset). b, The generation of a nonlinear electric field ENL by two excitation 
pulses EA and EB of comparable amplitude. The amplitude and phase of ENL depend 
on the inter-pulse time delay τ. c, A schematic of nonlinear multidimensional 
spectroscopy, in which Fourier transform of ENL along the two time variables  
{τ, t} resolves a nonlinear optical response χφ

(3) in a 2D spectrum. In the 
non-collinear excitation geometry shown, various components of χφ

(3) are 
emitted in unique phase-matched directions shown.
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disorder42,43. At higher temperatures, the peak becomes increasingly 
symmetric, suggesting a crossover into the regime of dominant intrin-
sic line-broadening. Next, we quantify this statement by extracting 
the individual intrinsic and disorder contributions to the Josephson 
plasma resonance peak width.

In 2D spectra, the disorder linewidth γdisorder is projected into a 
characteristic direction along the ‘diagonal’ (| ft| = | fτ|) line, in contrast 
to the intrinsic linewidth γintrinsic that results in symmetric broadening. 
One may intuitively understand this behaviour by interpreting the 
vertical and horizontal frequency axes as the frequencies of initial 
terahertz absorption and final terahertz emission respectively, causing 
each excitation in the continuum of Josephson couplings to appear at 
a unique position along the diagonal. In the limit of dominant disorder 
(γdisorder ≫ γintrinsic), the lineshapes along the ‘diagonal’ and perpendicu-
lar ‘anti-diagonal’ directions are decoupled42,44 and depend solely on 
γdisorder and γintrinsic, respectively42. In the present case of comparable 
intrinsic and disorder broadening, however, the two lineshapes must 
be simultaneously fit43 to extract γdisorder and γintrinsic.

Slices of the Josephson echo peak at 6 K are plotted in Fig. 5a, 
along the directions shown in the insets. The lineshape along the 
‘diagonal’ direction (orange) is broader than the lineshape along the 
‘anti-diagonal’ direction (blue), and the difference between the two 
peak widths indicates disorder line-broadening. Simultaneous fits of 
the two lineshapes (to phenomenological functional forms described 
and justified in Supplementary Section 3) were performed, from which 
we extract values of γdisorder = 0.08 THz and γintrinsic = 0.38 THz. This value 
for γdisorder is comparable to that reported by Dordevic et al.18 from linear 
reflectivity, which was extracted under an assumed value for γintrinsic.

In the linear optical response, the reflectivity edge associated 
with superconductivity rapidly fades into a featureless background 
with increasing temperature14. However, 2D terahertz spectroscopy 
distils the superfluid response from this normal fluid background 
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Fig. 2 | Phase-matching resolves individual plasmon nonlinearities.  
a, A schematic of wavevector phase-matching, in which momentum is only 
conserved along the in-plane (∥) direction and in its magnitude |kfp|. b, Sample 
rotation changes the in-plane momenta of each excitation field and determines 
the nonlinearity that arrives at the detector. c, Experimental measurements 
of the constituent components of χφ

(3) in La1.83Sr0.17CuO4 are shown with the 

corresponding sample rotation angles. The (ft, fτ) = (2, ±2) THz peaks are 
measured with EB arriving first, followed by EA. The (2, 0) and (2, 4) THz peaks are 
measured with EA arriving first, followed by EB. The (2, −2) THz peak corresponds 
to an emitted Josephson echo. The full phase-matching conditions for both time 
orderings are described in Supplementary Section 2.
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Fig. 3 | Disorder in schematic one- and two-dimensional spectra.  
a, A cartoon of homogeneous and disordered Josephson tunnelling in a layered 
superconductor. b, Homogeneous and disordered Josephson plasma resonance 
in one-dimensional spectra, which exhibit ambiguous lineshapes (black curves) 
in the presence of comparable levels of intrinsic and disorder broadening.  
c, Homogeneous and disordered Josephson plasma resonance in 2D Josephson 
echo spectra, in which disorder is evident through asymmetry of the Josephson 
echo peak.
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and uniquely enables us to follow disorder in the superconducting 
transport even at temperatures approaching the phase transition. 
Extracted values of γdisorder and γintrinsic are shown in Fig. 5b as a function 

of increasing temperature. First, the intrinsic linewidth γintrinsic increases 
rapidly with temperature owing to thermally activated quasiparticle 
excitations or perhaps even topological defects45. More surprising is 
the behaviour of the disorder linewidth γdisorder, which remains roughly 
constant up to a temperature of 25 K ≈ 0.7Tc. Above this temperature, 
the Josephson plasma resonance becomes lifetime limited and the 
disorder becomes unmeasurable.

One may expect the disorder to increase with temperature as the 
coherence length (reflecting the spatial extent of the Cooper wave-
function46) shrinks47. The independence of γdisorder with respect to tem-
perature thus raises the question of whether the disorder linewidth 
already reflects the full extent of the underlying electronic disorder. 
We compare in Fig. 6 the measured distribution of plasma frequencies 
(of standard deviation γdisorder) with the previously measured supercon-
ducting gap distribution in LSCO5. The large difference between the two 
distribution widths indicates, however, that in-plane disorder of the 
superconducting order parameter is not directly reflected in disorder 
of the out-of-plane transport.

We may intuitively understand the difference between the in-plane 
disorder of the superconducting order parameter to resultant disorder 
of the out-of-plane tunnelling resonance by considering its broadening 
effect on the linear optical response, from which the nonlinear optical 
response partially descends. Namely, assuming that the superfluid 
density directly inherits identical disorder from the underlying gap 
fluctuations (due to the short coherence length48 in LSCO49), one 
expects a disorder broadening of the linear optical response sup-
pressed by the plasma frequency anisotropy (ωp/ωab)

2 ≪ 1.
Our preliminary theoretical analysis of γdisorder, which will be pre-

sented elsewhere, indicates that the many-body nature of Josephson 
plasmons introduces additional physics beyond the well-known inter-
pretation of molecular photon echoes or spin echoes. Most notably, 
the momentum dependence that arises in extended systems prevents 
complete rephasing of collective excitations, resulting in an additional 
‘homogeneous-like’ background. We emphasize however, that the pri-
mary rephased component still exhibits the elongated peak lineshape 
characteristic of disorder echoes and observed in our measurements.

Recent advances in tunnelling methods8–11 will also provide 
new data to corroborate our conclusions and to systematically con-
nect these two methods. We note, however, that local probes are 
effective only at the lowest base temperatures, whereas the optical 
method demonstrated here is already applied up to 0.7Tc in this work. 
Nonlinear multidimensional responses are even observed immedi-
ately above Tc, although fitting of their corresponding Josephson 
echo signal is currently prevented by small signal amplitudes and 
signal-to-noise ratio. Suitable technical improvements will ena-
ble nonlinear probing of the partially coherent normal state and 
may provide precious new information on the nature of the pseu-
dogap phase. We also note how new and frequency-agile terahertz 
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sources, which are becoming available due to improvements in laser 
instrumentation50, will enable systematic measurements throughout 
the phase diagram of a single compound and across many families of 
cuprates, where frequencies of the plasma resonance vary between 
100 GHz and 15 THz (ref. 12).

In summary, we have made use of 2D terahertz spectroscopy to 
quantify the role of disorder in the interlayer tunnelling and, thereby, in 
the superconducting condensate. By measuring the terahertz Joseph-
son echo, we observe an interlayer tunnelling response that is largely 
immune to the underlying electronic disorder, which remains true even 
as temperature approaches the phase transition. This demonstration 
of terahertz echoes27 from a collective excitation provides us with a 
method to study inhomogeneities in a vast range of quantum materials, 
ranging from incipient ferroelectrics51 to spin liquids52. Furthermore, 
the inherent ultrafast nature of this method makes it applicable to mul-
tidimensional probes of light-induced non-equilibrium phenomena53,54 
to understand the role of disorder in transient states and their forma-
tion mechanisms.
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Methods
The sample used in our experiment was a single crystal of La1.83Sr0.17CuO4, 
grown using the travelling-solvent floating-zone method. The crystal 
was cut and mechanically polished using diamond lapping film along 
an ac-oriented surface ∼4 mm in size.

To perform 2D terahertz spectroscopy, two intense terahertz 
pulses were generated by optical rectification of 100 fs, 1,300 nm pulses 
in two OH1 (2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}
malononitrile) organic crystals. The two terahertz pulses are then 
focused in a non-collinear geometry onto the sample with a parabolic 
mirror of focal length 76.2 mm (ref. 55), resulting in peak electric fields 
of ~25 kV cm−1 and ~10 kV cm−1 at the sample surface (Supplementary 
Section 1) that together are comparable to the threshold electric 
field for reaching a nonlinear regime Ethresh = (hfp)/2ed ≈ 40 kV cm−1  
(ref. 40), where h is Planck's constant, 2e is the Cooper pair charge and 
d is the interlayer spacing. The emitted nonlinear electric field was then 
detected by conventional electro-optic sampling using 100 fs, 800 nm 
pulses in a ZnTe crystal. A differential chopping scheme, in which EA 
and EB were modulated at 500 Hz and 333 Hz, respectively, was used to 
isolate the nonlinear electric field from the excitation fields.

Data availability
Source data are provided with this paper. Any other supporting data 
are available from the corresponding authors upon reasonable request. 
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