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Abstract: Recently, two-dimensional terahertz spectroscopy (2DTS) has attracted increasing
attention for studying complex solids. A number of recent studies have applied 2DTS either
with long pulses or away from any material resonances, situations that yield unconventional
2DTS spectra that are often difficult to interpret. Here, we clarify the generic origins of observed
spectral features by examining 2DTS spectra of ZnTe, a model system with a featureless optical
susceptibility at low terahertz frequencies. These results also reveal possible artifacts that may
arise from electro-optic sampling in collinear 2DTS experiments, including the observation of
spurious rectified or second harmonic signals.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Two-dimensional optical spectroscopy [1,2] and its predecessor, two-dimensional nuclear
magnetic resonance (NMR) [3], are powerful techniques that have found widespread use, in
both industrial application and fundamental science. Recently, advances in laser technology
have extended these multi-dimensional spectroscopies into terahertz frequencies in which many
fundamental excitations of condensed matter are found. So-called 2-D THz spectroscopy
(2DTS) [4–6] has been demonstrated in a variety of material systems, such as molecular gases
[7,8], semiconductors [9–12], ferroics [13–16], superconductors [17–19], and even topological
materials [20].

Two-dimensional optical spectroscopy and two-dimensional NMR are most often performed
and interpreted in the impulsive limit [21,22], in which the measured nonlinear wave-mixing
signal directly reflects a microscopic optical response function with only a scalar dependence
on the excitation field amplitudes EA and EB [23]. As shown in Fig. 1(a), in the time-domain,
this limit corresponds to excitation pulse durations far shorter than any relevant dephasing times,
while in the frequency-domain, this limit corresponds to an excitation bandwidth far broader than
the spectral content of the relevant optical response function.

These conditions, however, are increasingly violated in 2DTS experiments, due to both
limitations of terahertz light sources and the relevance of low-energy continua in the physics
of solid-state materials. For example, as shown in Fig. 1(b), excitation pulse durations may be
comparable to system dephasing times which corresponds to excitation spectral bandwidths
comparable or greater than resonance linewidths. In addition, as shown in Fig. 1(c), the excitation
bandwidth may not be centered on any resonance, probing only a featureless continuum. Though
distinct in origin, these two cases both result in a nonlinear signal that is generated only during
pulse overlap and a two-dimensional spectrum that is shaped primarily by the excitation pulse
spectrum.

Here, we aim to clarify the generic spectral features of non-resonant (and non-impulsive)
2DTS experiments. We present 2DTS spectra of ZnTe, a model system with a featureless optical
susceptibility in the few-THz frequency regime, which exhibit characteristic features due to both
second- and third-order optical nonlinearities that are well-reproduced by simulation. As will be
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Fig. 1. Three regimes of nonlinear signal generation by two excitation pulses EA and EB in
2DTS. (a) Impulsive excitation of a resonance χ, in which excitation pulse durations are
far shorter than relevant dephasing times. (b) Driven excitation of the resonance, in which
pulse durations are comparable to relevant dephasing times. (c) Off-resonant excitation, in
which the excitation spectrum does not overlap with any material resonance. Insets depict
corresponding spectral overlap of the excitation spectra EA/B and optical response χ.

elucidated below, these results also reveal artifacts that may arise in 2DTS experiments due to a
collinear detection setup.

2. Experimental details

Figure 2(a) illustrates our experimental setup, which emulates a typical 2TDS experiment in
a reflection geometry. Two terahertz pulses EA and EB are generated by optical rectification
in two separate organic crystals DAST [24] (at a 1 kHz repetition rate), which are combined
collinearly using an initial silicon beamsplitter. These pulses then propagate through a second
silicon beamsplitter to the sample position, and their subsequent reflections then propagate to the
electro-optic sampling (EOS) position where they are combined with an 800 nm probe pulse
on a ZnTe crystal of 150 µm thickness. Although electro-optic sampling in this experiment
was not calibrated to the absolute electric field, we estimate peak fields on the order of tens of
kV/cm per pulse (where EA ≈ 3EB). In the usual case, the ZnTe would act as an EOS detector for
the nonlinear signal generated by the mixing of EA and EB at the sample position, but here we
examine the characteristic 2TDS responses of the ZnTe itself to the non-resonant excitation from
the incident fields.

ZnTe exhibits a relatively featureless optical susceptibility at frequencies below its first optical
phonon resonance at 5.3 THz [25]. This resonance lies above the spectra of the excitation pulses
EA/B, as shown in the inset of Fig. 2(a), leading to a non-resonant excitation condition (as shown
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Fig. 2. (a) 2DTS experiment in a reflection geometry, with a gold mirror placed at the
sample position. The normalized excitation spectra EA/B(f ), measured with a separate GaP
EOS detector and shown inset, are largely below the lowest phonon resonance of ZnTe at 5.3
THz. (b) Excitation fields EA/B (normalized to their respective peak fields) plotted alongside
the non-resonant nonlinear signal (normalized to the peak signal field at τ = 0) for three time
delays as indicated. (c) Two-dimensional time profile of the nonlinear signal as a function of
inter-pulse time delay τ and laboratory time t.
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in Fig. 1(c)). To examine this situation, we therefore place a gold mirror at the sample position
so that the primary nonlinearity driven by EA and EB is that of the ZnTe electro-optic crystal
itself. A standard double-chopping scheme is used in which pulses A and B are modulated at 1/2
kHz and 1/3 kHz respectively, resulting in a nonlinear signal that can be lock-in detected at 1/6
kHz. The nonlinear signal is then defined by

Signal = EEO
AB − EEO

A − EEO
B , (1)

where EEO
AB represents the electro-optic response when both excitation pulses are present, and

EEO
A and EEO

B are the electro-optic responses with each pulse present individually.
In Fig. 2(b), the time profiles of both excitation pulses and the generated nonlinear signal are

shown for three inter-pulse time delays τ = 0, 0.5, and 1 ps. We now point out two salient features
of these measurements. First, a nonlinear signal is generated only when the two excitation pulses
are overlapping in time, and it moves backwards in time with the overlap region as τ increases.
Second, the time profile of the nonlinear signal at the delays shown is clearly unipolar, which
reflects rectification arising from a second-order coordinate response of the ZnTe [26]. We
remark that this signal is clearly not a radiated field, but is essentially the electro-optic Kerr
effect [27] driven by two distinct excitation fields. The full two-dimensional time evolution of the
nonlinear signal is shown in Fig. 2(c), which primarily exhibits the unipolar signal at early delays
τ and an interesting sub-structure beyond τ = 1 ps.

3. Phenomenological model

Fig. 3. (a) Comparison of the experimental 2DTS spectrum of ZnTe and a corresponding
spectrum simulated as described in the text. Both are acquired in an off-resonant excitation
condition and normalized to their maximum values. (b) Spectra of solely the second-order
and third-order coordinate responses (normalized to the peak value of Q2) as indicated, which
correspond to the electro-optic Kerr effect and fourth-order electro-optic effect respectively.
Each peak is labeled by its underlying wave-mixing term.

To understand the complex dynamics exhibited in Fig. 2(c), we Fourier transform along both
time axes {τ, t}, obtaining a two-dimensional spectrum. The resultant spectrum is shown in the
left panel of Fig. 3(a), which exhibits multiple peaks that correspond to distinct electro-optic
nonlinearities of the ZnTe.

The origin of each feature can be understood by considering a simple model in which a
nonlinear oscillator (e.g. a phonon) is driven (in this case, non-resonantly) by the electric field
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E(t). The total energy of such a system can be written as:

H = HK + HU + HL−M (2)

where we have a kinetic energy, HK =
1
2m

(︂
dQ
dt

)︂2
, and a light-matter coupling term HL−M =

−z∗QE(t) where Q is the oscillator coordinate, z∗ is its effective charge, and m its effective mass.
The potential energy HU contains a harmonic term with a natural frequency ω0 in addition to
anharmonic contributions. Since ZnTe lacks inversion symmetry, we include both cubic and
quartic anharmonicities:

HU =
1
2

mω2
0Q2 +

1
3

maQ3 +
1
4

mbQ4 (3)

For b>0, the potential stiffens with increasing excursions of Q and is therefore the usual case
to satisfy stability criteria.

The equation of motion for Q(t) is given by:

d2Q
dt2
= −

1
m
∂H
∂Q

− γ
dQ
dt

= −ω2
0Q − aQ2 − bQ3 +

z∗

m
E(t) − γ

dQ
dt

,
(4)

where we’ve also included a phenomenological damping term with a damping rate γ. The above
equation may be solved perturbatively by assuming an ansatz for Q(t) as a power series in λ, a
dummy variable that we can set to unity at the end of our analysis:

Q(t) = λQ1(t) + λ2Q2(t) + λ3Q3(t) + . . . (5)

Plugging this solution into (4) and collecting terms in powers of λ, we obtain a hierarchy of
equations:

Q̈1 = −ω2
0Q1 − γQ̇1 +

z∗

m
E(t) (6a)

Q̈2 = −ω2
0Q2 − γQ̇2 − aQ2

1 (6b)

Q̈3 = −ω2
0Q3 − γQ̇3 − 2aQ1Q2 − bQ3

1
...

(6c)

Note that, from the simple cubic and quartic nonlinearities in HU , a cascade of nonlinearities
follow to infinite order. The corrections Qn(t) decrease in magnitude with increasing order n, so
we truncate our solution at Q3(t).

Equations (6) provide an intuitive picture for the nonlinear dynamics upon driving. Equation (6a)
for Q1(t) describes a harmonic oscillator of resonance frequency ω0 driven by E(t), and therefore
corresponds to solely the linear response of Q(t). Equations (6b) and (6c) then each describe
a harmonic oscillator of identical resonance frequency ω0 but driven indirectly by −aQ2

1 and
−2aQ1Q2 − bQ3

1 respectively. The nonlinear signal is then determined by a combination of Q2(t)
and Q3(t), and in principle higher-order contributions that are assumed to be negligible.

We now numerically solve the above system of equations for {Q1, Q2, Q3} with a standard
Runge-Kutta solver method. In the simulations, the system is excited by two identical (EA = EB)
pulses

E(t) = EAe−t2/2σ2
t eiωct + EBe−(t+τ)

2/2σ2
t eiωc(t+τ) + c.c. (7)

of carrier frequency ωc = 2 THz and pulse duration σt = 400 fs that resemble the experimental
pulse spectra. To simulate the non-resonant excitation condition, the oscillator frequency is set
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to the transverse-optical phonon frequency of ZnTe with ω0 = 5.3 THz, and a large damping
rate of γ = 285 THz to preclude any resonant effects. The nonlinear coefficients (a and b) were
fit to match the relative peak intensities observed in our experiment. For simplicity, we neglect
modes at higher frequency since they contribute weaker nonlinear responses and would produce
qualitatively similar 2DTS spectra. The result of simulating the total nonlinearity Q2 + Q3 is
shown in the right panel of Fig. 3(a), which reproduces nearly all of the salient peak positions
and lineshapes of the experimental spectrum.

We can further clarify the origins of each peak by plotting the second- and third-order
coordinate responses individually, which are shown in Fig. 3(b). To then identify the underlying
wave-mixing combinations, we can analyze the equations of motion heuristically by noting that
Q1 will yield a general solution of the form:

Q1 = QA
1
[︁
EAeiωct + E∗

Ae−iωct]︁
+ QB

1

[︂
EBeiωc(t+τ) + E∗

Be−iωc(t+τ)
]︂ (8)

where the oscillation frequency is set toωc due to the non-resonant excitation condition and the re-
sponse amplitudes and oscillation phases are combined into the prefactors QA/B

1 . The forcing func-
tion (dropping the terms proportional to (QA

1 )
2 and (QB

1 )
2 which are filtered by the detection scheme

in Eq. (1)) for Q2 is then directly found as−aQ2
1 = −aQA

1 QB
1
(︁
EAEBeiωc(2t+τ) + EAE∗

Be−iωcτ + c.c.
)︁
,

giving a general solution:

Q2 = QAB
2

[︂
EAEBeiωc(2t+τ) + EAE∗

Be−iωcτ + c.c.
]︂

(9)

where relevant prefactors have once again been combined into QAB
2 . We may now directly read

the oscillation frequencies in each phase factor to determine their respective coordinates in a
two-dimensional spectrum, which are {ft, fτ} = {2ωc,ωc} and {ft, fτ} = {0,−ωc} for the first
and second terms respectively. Performing the same procedure for Q3, we find:

QNL ∝ QA |B |2

3 EA |EB |
2eiωct + QA∗BB

3 E∗
AE2

Beiωc(t+2τ)

+ Q |A |2B
3 |EA |

2EBeiωc(t+τ) + QAAB∗

3 E2
AE∗

Beiωc(t−τ)

+ QABB
3 EAE2

Beiωc(3t+2τ) + QAAB
3 E2

AEBeiωc(3t+τ)

+ c.c.

(10)

where we can likewise read the frequency coordinates, which have been labeled in Fig. 3(b).
Again, nonlinearities that scale with only a single excitation pulse are dropped due to the detection
scheme in Eq. (1). We note that the peaks located at {ft, fτ} = {2, 4} THz and {2, 0} THz are not
pronounced in the experimental spectra due to the lower peak field of EB with respect to that of
EA, as confirmed by simulations performed with unbalanced pulse amplitudes.

4. Discussion

The model presented above matches the experimental spectra well, showing the unique features of
non-resonantly driven nonlinear systems. With this understanding, we now show that equivalent
features can also arise from non-impulsive, resonantly driven systems (i.e. when the incident
THz field bandwidths are on the order of or greater than that of the oscillator). In Fig. 4(a) we
show the familiar resonant spectra observed in the impulsive limit, simulated with the same
parameters as in Fig. 3, but with a hypothetical mode at ω0 = 2 THz and γ = 1 THz. These
spectra exhibit symmetric lineshapes along both axes fτ and ft, and is therefore what we would
qualitatively expect from resonantly exciting the ZnTe phonon mode with an excitation bandwidth
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that exceeds the phonon linewidth. In Fig. 4(b), the damping rate is increased to γ = 10 THz
to exceed the excitation spectral bandwidth (FWHM ≈ 1 THz), resulting in a nonlinear signal
generated solely during temporal overlap of the excitation pulses. The spectra in Fig. 4(b) bear a
remarkable resemblance to the non-resonant spectra shown in Fig. 3(b), since in both cases the
nonlinear response is predominately shaped by the excitation spectrum.

Fig. 4. Simulated 2DTS spectra under resonant driving (ω0 = ωc = 2 THz) in the
(a) impulsive limit (γ = 1 THz) and (b) driven limit (γ = 10 THz). In the impulsive
limit, symmetric peak lineshapes are observed that resemble those from conventional
multidimensional spectra, while in the driven limit the spectra resemble the non-resonant
spectra presented in Fig. 3.

Indeed, a distinctive feature of the spectra in Fig. 3(b) and Fig. 4(c) are their asymmetric
lineshapes, as all peaks exhibit a marked elongation along the fτ = ft direction (from the origin to
the upper right corner). This may be understood by considering the fact that the temporal overlap
of the pulses, during which a non-resonant (or non-impulsive) nonlinear signal is generated,
moves backwards in time as the inter-pulse time delay τ increases (which can be seen for example
in Fig. 2). The frequency-domain representation of such a non-resonant signal along t = −τ may
be most easily intuited by comparison to a photon echo signal along t = τ, which results in the
inverse spectral lineshape along fτ = −ft.

As noted above, the experimental setup used here is deliberately generic. Replacing the gold
mirror in Fig. 2(a) with any material of interest results in a typical collinear 2DTS experiment,



Research Article Vol. 32, No. 16 / 29 Jul 2024 / Optics Express 28167

measured in reflection. In such an experiment, ideally one only measures the emitted nonlinear
signal (EEO

AB − EEO
A − EEO

B ) generated from the mixing of EA and EB in the sample. If only the
nonlinear signal is present in the EOS crystal (e.g. ZnTe), one can measure its field profile in time
through the standard linear electro-optic (Pockels) effect. The results presented here, though,
reveal possible artifacts (similar to the well-known ‘coherent artifacts’ in transient absorption
spectroscopy [28]) that may arise in such a geometry in which, in addition to the nonlinear signal,
both excitation pulses, EA and EB reflect off the sample and reach the EOS crystal. Therefore, even
with a double-chopping scheme, a non-resonant nonlinearity of the form presented here may be
observed in the signal from the EOS crystal, in addition to the material response of interest. Care
must therefore be taken in collinear experiments to verify the absence of rectified nonlinearities
that scale as E∗

AEB or EAE∗
B, which are the leading terms in the quadratic electro-optic nonlinearity

from the EOS crystal. These terms lead to responses at zero frequency and, thus, should not
radiate from a probed sample. Such zero frequency signals present in the measured nonlinear
response are, therefore, artifacts of the detection scheme in a collinear geometry, which may
occur in both reflection and transmission configurations.

Distinguishing third-order artifacts from a true sample signal may be less obvious however, in
which case additional measurements may be performed to check the source of a nonlinearity. For
example, one can verify that the electro-optic response scales linearly with signal field and shows
a theoretically expected polarization dependence by adding an analyzer between the sample
and the EOS detection (as exemplified by Refs. [15,16]). In certain cases however, nonlinear
excitation of the EOS detector may be unavoidable due to weak signal strength with respect to
excitation field. To avoid nonlinear excitation of the EOS crystal entirely, one can implement
a non-collinear geometry, in which only the nonlinear electric field from the sample is able to
reach the EOS crystal [18].

5. Conclusion

In conclusion, we have performed two-dimensional terahertz spectroscopy in a non-resonant
excitation condition on ZnTe. The resultant spectrum exhibits unique features and lineshapes
that are reproduced well by a simple simulation. We also present a perturbative analysis of
the equations of motion to assign wave-mixing terms to each observed peak, and point out the
lineshape elongation that may be used as indication of a spectrum taken in either a driven or
non-resonant excitation condition. Finally, our results reveal potential nonlinear electro-optic
artifacts that may contaminate spectra taken in collinear experimental geometries.
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