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Spectroscopic signatures of electron-phonon coupling in silicon-vacancy centers in diamond
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Vacancy centers in diamond have proven to be a viable solid-state platform for quantum-coherent optoelec-
tronic applications. Among the variety of vacancy centers, silicon-vacancy (SiV) centers have recently attracted
much attention as an inversion-symmetric system that is less susceptible to electron-phonon interactions. Never-
theless, phonon-mediated processes still degrade the coherent properties of SiV centers; however, characterizing
their electron-phonon coupling is extremely challenging due to their weak spectroscopic signatures and remains
an open experimental problem. In this paper we theoretically investigate signatures of electron-phonon coupling
in simulated linear and nonlinear spectra of SiV centers. We demonstrate how even extremely weak electron-
phonon interactions, such as in SiV centers, may be completely characterized via nonlinear spectroscopic
techniques and even resolved between different fine-structure transitions.
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I. INTRODUCTION

Electronic coupling to vibrations (phonons) is universal
in solid-state systems. In solids of finite dimension, these
interactions determine numerous properties such as band gap
renormalization [1,2] and electronic transport [3]. In zero-
dimensional systems, such as vacancy centers in diamond,
they play an equally important role. In nitrogen-vacancy
(NV) centers, the presence of a large phonon sideband in
their optical response comprises the primary limiting factor
of zero-phonon line emission brightness [4]. Even in neg-
atively charged silicon-vacancy (SiV−) centers, which are
largely insulated from electron-phonon interactions by their
inversion-symmetric configuration, phonon-mediated dephas-
ing processes still remain as the main limiting factor in their
performance as quantum-computing architectures [5,6].

Due to its primary importance, characterizing the phonon
spectral density J (ω) of such zero-dimensional systems has
attracted sustained research interest. In systems comprising
discrete energy levels, J (ω) reflects the vibrational-frequency
dependence of electron-phonon coupling and determines line
shapes in optical spectra [7,8]. Traditionally the spectral den-
sity has been experimentally measured by mainly fluores-
cence line narrowing (FLN) or spectral hole burning (SHB),
which are linear and third-order nonlinear spectroscopic tech-
niques, respectively. The main advantage of FLN and SHB
is their ability to extract a homogeneous response from an
inhomogeneously broadened resonance via narrow-band ex-
citation. Recently, multidimensional coherent spectroscopy
(MDCS) was demonstrated to be a powerful method for
directly measuring the ensemble-averaged spectral density
with outstanding signal-to-noise ratio [9]. In contrast to SHB,
which measures the real-quadrature third-order optical re-
sponse at a single excitation frequency, MDCS is capable of
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measuring the entire complex third-order optical response
function S(3)(ωτ , ωT , ωt ).

However, characterization of the spectral density J (ω) is
most commonly performed on optical spectra dominated by
vibrational line shapes such as molecular [10,11] or nanocrys-
tal [9,12] systems. In this paper, we perform a detailed
analysis of how weak electron-phonon coupling manifests in
different spectroscopic measurements (namely linear fluores-
cence and nonlinear transient-absorption and MDCS spectro-
scopies) of SiV− centers. We discuss how mixed time- and
frequency-domain spectroscopies enable the complete char-
acterization of the phonon spectral density in SiV− centers
by relating electron-phonon coupling parameters to spectro-
scopic observables. In particular, we theoretically demonstrate
how MDCS enables the measurement of vibronic coherence
times in SiV− centers with exceptional sensitivity. We then
emphasize the information uniquely obtained via nonlinear
MDCS techniques.

II. THEORETICAL METHODS

We begin with the simplest case of an optical transition
between two energy levels |g〉 and |e〉 defined by an energy
splitting h̄ωeg [shown in Fig. 1(a)]. The interaction of this
transition with a resonant optical field is defined by its optical
susceptibility χ [13], and for weak excitation intensities the
optical susceptibility may be described perturbatively. For
centrosymmetric systems the lowest-order terms are the linear
and third-order optical susceptibilities χ (1) and χ (3), respec-
tively, which generate optical polarizations that scale linearly
and cubically with excitation field strength:

P(t ) = ε0[χ (1)E (t ) + χ (3)E3(t ) + · · · ]

= P(1)(t ) + P(3)(t ) + · · · , (1)

where for simplicity we have taken the polarization and fields
to be scalar quantities. As shown in Fig. 1(a), each polariza-
tion term gives rise to distinct emitted fields that we call the
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linear signal ELinear (which underlies optical absorption and
fluorescence) and the four-wave-mixing (FWM) signal EFWM,
respectively.

To describe time-domain spectroscopic measurements, it is
often convenient to recast the polarization in terms of optical
response functions S(n):

P(1)(t ) =
∫ t

−∞
S(1)(t1)E (t − t1)dt1, (2)

P(3)(t ) =
∫ t

−∞

∫ t3

−∞

∫ t2

−∞
S(3)(t3, t2, t1)E (t − t3)

×E (t3 − t2)E (t2 − t1)dt1dt2dt3. (3)

It can be shown straightforwardly that for impulsive excitation
by delta function pulses, each polarization term P(n) becomes
identical to its respective optical response function S(n) with
the appropriate time arguments [7,14,15]. In this time-domain
picture, the (non)linear optical response function may be inter-
preted in terms of sequential changes in the system’s density
matrix induced by interactions with each incident optical
field. These sets of changes are collectively termed quantum
pathways, and may be represented by so-called (double-sided)
Feynman diagrams [16]. Feynman diagrams consist of ladders
of density matrix elements that begin and end in a population
state. Time advances upward, and arrows pointing (outward)
inward with respect to each diagram (de)excite the bra or
ket of the appropriate density matrix element. We present
examples of such diagrams in Fig. 1 and discuss their interpre-
tation below, but for a more detailed discussion and rules on
their construction we refer readers to more complete reference
texts [7,16].

A. Linear absorption and fluorescence

Feynman diagrams representing absorption and fluores-
cence quantum pathways are shown in Figs. 1(b) and 1(c).
First, we consider the absorption diagram in Fig. 1(b), which
begins in an initial ground population state |g〉〈g|. An incident
electric field, represented by the first arrow, converts this pop-
ulation into a coherence |e〉〈g|. The last arrow then converts
the intermediate coherence into a final excited population
state |e〉〈e|. We note that this last arrow does not correspond
to an excitation field, but instead originates from taking the
expectation value of the macroscopic polarization. The flu-
orescence diagram in Fig. 1(c), which begins in an initial
excited population state, may be interpreted in the same way.
Without the need for an incident field, however, the physical
origin of the interaction by the first arrow is not as clear. We
may informally connect this interaction to perturbation by the
vacuum field [17], but a proper interpretation is not possible
in the current semiclassical picture.

By referring to the Feynman diagram shown in Fig. 1(b),
the linear optical response function may be written as

S(1)(t ) = i

h̄
e−iωegt−g(t ) + c.c., (4)

which reflects the dynamics of the coherence |e〉〈g| generated
by the first light-matter interaction. These involve oscillation
at the energy gap frequency ωeg and dephasing characterized
by the so-called dephasing line shape function g(t ). From
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FIG. 1. (a) Diagrams of (left) a two-level system and (right)
linear/FWM spectroscopies. (b)–(c) Feynman diagrams of linear
(b) absorption and (c) fluorescence. (d) FWM pulse-ordering dia-
gram. Discussion in main text analyzes the FWM signal collected in
the −kA + kB + kC direction, in which this pulse ordering generates
a rephasing signal. (e)–(f) Feynman diagrams of (e) excited-state
emission and (f) ground-state bleach third-order quantum pathways.
We note that excited-state absorption pathways [16] are not possible
for the two-level system considered here.

here on we neglect the complex conjugate terms of the linear
and higher-order response functions due to redundancy. The
frequency-domain absorption line shape is then simply given
by Fourier transform of the optical response:

σa(ω) = 1

π
Re

∫ ∞

0
ei(ω−ωeg)t−g(t )dt, (5)

where we have taken the real (absorptive) part of the line
shape that is measured by absorption spectroscopy.
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The fluorescence spectrum is then similarly

σ f (ω) = 1

π
Re

∫ ∞

0
ei(ω−ωeg+2λ)t−g∗(t )dt, (6)

where λ is the vibrational reorganization energy [7]. Both
the absorption and fluorescence line shapes depend intimately
on the underlying electron-phonon coupling via g(t ), which
we will discuss in further detail after incorporating nuclear
motion into our system.

B. Nonlinear four-wave mixing

In the most general FWM experiment, three excitation
pulses {A, B, C} [shown in Fig. 1(d)] with variable interpulse
delay and wave vectors {kA, kB, kC}, respectively, are directed
onto a material. FWM signals generated by all three beams
together emit into eight distinct phase-matched directions
±kA ± kB ± kC, which provides a way to isolate third-order
nonlinear optical signals from stronger signals of lower order.
A common choice is to collect the FWM signal emitted in the
−kA + kB + kC direction, with the rephasing (photon-echo)
pulse ordering shown in Fig. 1(d). As the name suggests, the
rephasing pulse ordering generates a photon-echo FWM sig-
nal that provides access to homogeneous dephasing dynamics
of an inhomogeneous distribution of resonance energies [18].

The two possible rephasing-pulse-ordering Feynman dia-
grams are shown in Fig. 1(e) which feature more interactions,
but may be interpreted in a way analogous to that for linear
response diagrams. The third-order response function is then
written as

S(3)(t, T, τ ) =
(

i

h̄

)3

[RESE(t, T, τ ) + RGSB(t, T, τ )], (7)

where the excited-state emission and ground-state bleach
response functions RESE and RGSB [corresponding to the di-
agrams shown in Figs. 1(e) and 1(f)] are

RESE = eiωeg(τ−t )e−	τ/2e−	t/2e−	T

× e−g∗(τ )+g(T )−g∗(t )−g(T +t )−g(τ+T )+g(τ+T +t ), (8)

RGSB = eiωeg(τ−t )e−	τ/2e−	t/2e−	T

× e−g∗(τ )+g∗(T )−g(t )−g∗(T +t )−g∗(τ+T )+g∗(τ+T +t ), (9)

where 	 = 1/T1 is the population relaxation rate of |e〉〈e|.
Because the excited state lifetime T1 exceeds a nanosecond
in SiV− centers [19], population dynamics are negligible in
the (sub)picosecond regime considered here.

C. Electron-phonon coupling and the dephasing
line shape function

In solid-state materials, the Hamiltonian is often parti-
tioned into an electronic system, a thermal reservoir (phonon
modes), and their interaction. If the thermal reservoir is taken
to be a set of harmonic oscillators, we may adopt the spin-
boson Hamiltonian [20,21]:

H = |e〉〈e|(h̄ωeg + λ) +
∑

α

h̄ωαa†
αaα

+ |e〉〈e|
∑

α

√
sα (a†

α + aα ), (10)

where h̄ωeg is the transition energy, a(†)
α are the creation/

annihilation operators for phonon mode α, and sα is the
Huang-Rhys factor that quantifies the electron-phonon cou-
pling strength for mode α. In order, each term represents the
energy of the electronic excitation, the energy of the thermal
reservoir, and the electron-phonon coupling, respectively.

In electronic systems comprising discrete states, the pri-
mary effect of electron-phonon coupling is to modulate tran-
sition energies via elastic interactions [7,9]. In this case, the
effect of the environment on a given electronic transition
is completely characterized by the spectral density J (ω).
Because energy gap modulation comprises the microscopic
origin of coherence dephasing, the dephasing line shape func-
tion may be directly related to the spectral density. It may be
shown [7] that for the spin-boson model, the dephasing line
shape function is given exactly by

g(t ) = 1

2π

∫ ∞

−∞
[1 − cos(ωt )] coth

(
β h̄ω

2

)
J (ω)dω

+ i

2π

∫ ∞

−∞
[sin(ωt ) − ωt]J (ω)dω, (11)

where β = 1
kBT and we have denoted temperature by T to

avoid confusion with the time delay T .

III. RESULTS AND DISCUSSION

The electronic fine structure of SiV− centers in diamond
consists of four closely spaced optical transitions of or-
thogonal polarizations [22]. Although SiV− centers bene-
fit from greatly reduced electron-phonon coupling due to
their inversion symmetry, phonon-mediated processes still
persist as primary sources of decoherence [5,6]. Here we
consider electronic transitions without any inhomogeneous
broadening, which is a good approximation under low-strain
conditions [23].

A. Simulation parameters

Two main vibrational modes have been reported in the
spectral density: a symmetry-preserving mode of calculated
energy h̄ω1 = 37 meV and a symmetry-breaking mode of cal-
culated energy h̄ω2 = 63.19 meV [24]. The spectral density
of a vibrational mode i with energy h̄ωi may be modeled as

J (ω) = 1

ω

2
√

2λiω
2
i γi(

ω2 − ω2
i

)2 + 2γ 2
i ω2

, (12)

where λi is the contribution of mode i to the total reorga-
nization energy λ and γ is a damping rate that determines
the width of vibrational features. We note that the above
expression is derived for an exponentially decaying energy
gap time-correlation function [21]. Here, we model coupling
of all four optical transitions, with transition dipole moments
μeg, to these two vibrational modes. Coherent coupling be-
tween electronic states, which is beyond the scope of this
study, is neglected. Since experimental characterization of
the SiV− spectral density has not yet been performed, sim-
ulation parameters are chosen (listed in Table I) to agree
with experimental fluorescence spectra [25]. To investigate
the situation of varying electron-phonon coupling between
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TABLE I. Simulation parameters used for each of the four optical
transitions comprising the SiV− fine structure. These consist of the
transition dipole moment μeg and spectral density reorganization
energy λ and damping rate γ .

h̄ωeg + λ (meV) μeg λ1 (meV) γ1 λ2 (meV) γ2

1682.09 0.25 3 0.4ω1 4 0.05ω2

1682.28 1 3 0.4ω1 4 0.03ω2

1683.16 0.75 3 0.4ω1 4 0.03ω2

1683.36 0.5 3 0.4ω1 4 0.05ω2

different fine-structure transitions, we assume marginally
different damping rates γ2 = 0.03ω2 and γ2 = 0.05ω2 be-
tween the orthogonally polarized doublets of transition en-
ergies {1682.28, 1683.16} meV and {1682.09, 1683.36} meV,
respectively. The total spectral densities for each doublet are
plotted in Fig. 2(a), each exhibiting two peaks centered at
the vibrational energies h̄ω1 and h̄ω2. We note that the more
strongly damped case γ2 = 0.05ω2 corresponds to a broader
peak in the spectral density.

B. Fluorescence spectroscopy

Fluorescence spectra simulated with the parameters given
in Table I are plotted in Fig. 2(b) at cryogenic (4 K) and room
(295 K) temperature, which compare well to experiment [25].
Their counterpart absorption spectra are not shown here, but
are simply mirror images of the fluorescence spectra around
h̄ωeg + λ [7]. As shown in the inset, the SiV− fine structure
is resolved at 4 K, but becomes indistinguishable at higher
temperatures due to thermal broadening of the homogeneous
linewidths. Vibronic features are also apparent in the room-
temperature fluorescence at lower emission energies, directly
corresponding to the two-peak spectral density shown in
Fig. 2(a). To examine vibronic features of the fluorescence
spectrum at 4 K, a magnified spectrum is shown in Fig. 2(c) as
indicated. Although the same, albeit weaker, vibronic features
are observed, individual contributions from each of the fine-
structure transitions are indistinguishable. Because the widths
of vibronic features are determined not by the electronic
dephasing rate but by the much faster vibronic dephasing rate
corresponding to the spectral density width, more sophisti-
cated spectroscopic techniques are necessary to characterize
electron-phonon coupling of individual fine-structure transi-
tions in SiV− center ensembles. In the next sections we show
how MDCS, a class of nonlinear spectroscopic techniques,
is capable of simultaneously characterizing all fine-structure
transitions and their associated vibronic coherence times.

C. Two-dimensional coherent spectroscopy

As a system possessing inversion symmetry, SiV− centers
do not exhibit a second-order nonlinear optical response.
Thus, the lowest-order nonlinear spectroscopies applicable
to SiV− centers are third-order four-wave-mixing techniques
that measure portions of the third-order optical response
function S(3) in the time or frequency domain (related by
Fourier transform). One such technique is two-dimensional
coherent spectroscopy (2DCS), a subset of the broad class of
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FIG. 2. (a) Spectral density calculated according to the param-
eters given in Table I. (b) Fluorescence spectra at 4 K and 295 K
simulated for the spectral densities plotted in (a). Inset shows zoom-
in of the zero-phonon line, which exhibits fine structure at 4 K.
(c) Magnified plot of the fluorescence spectrum at 4 K in (b) to
emphasize the vibronic features.

MDCS techniques, which is capable of measuring entire cross
sections of the complex-valued nonlinear optical response
via heterodyne detection of nonlinear optical signals. Most
commonly, so-called one-quantum spectra S(3)(ωt , T, ωτ ) are
measured that correlate absorption and emission dynamics of
a system.

Magnitude one-quantum spectra |S(3)(ωt , T, ωτ )| simu-
lated for a rephasing pulse ordering are shown in Fig. 3(a)
for three temperatures 4 K, 150 K, and 295 K (room tempera-
ture). Finite-pulse effects [26] are neglected, which implicitly
assume impulsive excitation by delta function pulses with in-
finite spectral bandwidth. At 4 K multiple peaks arising from
the SiV− fine structure are visible, which become indistin-
guishable at higher temperatures due to thermal broadening.
At the higher temperatures 150 K and 295 K, features at
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FIG. 3. (a) Simulated magnitude rephasing one-quantum spectra for T = 1 ps and temperatures 4 K, 150 K, and 295 K as indicated. Inset
of 4 K spectrum shows zoom-in of dashed box in main plot, showing multiple peaks arising from the SiV− fine structure. We note that coupling
between fine-structure transitions is neglected here, as evidenced by the absence of off-diagonal (|h̄ωτ | �= |h̄ωt |) features [18]. (b) Comparison
of TA and fluorescence spectra at the same temperatures in (a) plotted as a function of detuning from the transition energy. Inset of the 4 K
plot shows zoom-in of the vibronic features located at −ω2.

(ωt , ωτ ) = (ωeg ± ω2, −ωeg) and (ωeg, −ωeg − ω2) are vis-
ible which indicate coherent electron-phonon coupling. We
note that for stronger electron-phonon coupling, additional
peaks at (ωt , ωτ ) = (ωeg ± ω2, −ωeg − ω2) would appear as
well.

D. Transient-absorption spectroscopy

A more common third-order nonlinear spectroscopic tech-
nique is transient-absorption spectroscopy (TA). Sometimes
referred to as transient SHB [27], TA may be considered a
generalization of SHB that resolves temporal population dy-
namics [28]. TA spectra may be acquired via initial excitation
by a pump pulse tuned to an electronic resonance, followed
by spectrally resolved measurement of pump-induced changes
in absorption of a broadband probe pulse. Experimentally,
there is a trade-off between the temporal and frequency res-
olution of the pump pulse due to its time-bandwidth product.
Here we analyze horizontal lineouts of real-quadrature one-
quantum spectra Re{S(3)(ωt , T, ωeg)} at a given waiting time
T , which are ideal TA spectra with potentially infinite time
and frequency resolution. TA spectra, taken as lineouts from
simulated real-quadrature one-quantum spectra, are compared
to fluorescence spectra at the corresponding temperatures in
Fig. 3(b). The features of fluorescence and TA spectra are
observed to be very similar, consisting of vibronic sidebands
at energy −h̄ω2, except for an additional sideband at energy
+h̄ω2 in the TA spectra. However, the true utility of TA
spectra becomes apparent once we consider waiting-time
dynamics during delay T .

First, we examine the sideband amplitude at the frequency
of the symmetry-breaking vibration, h̄ωt = −h̄ω2, the side-
band amplitude as a function of T . At low temperatures
the four transitions of the SiV− fine structure are clearly
resolved, so we plot resultant dynamics from pumping at each
of the four transition energies at 4 K in Fig. 4(a). Coherent
oscillations at the phonon frequency ω2 are observed, which
are damped on the subpicosecond timescale. We group the
plots by emission polarization as indicated, and fit each curve
to a damped sinusoid:

ASB = cos(ω2T + φ)e−T/Tvib , (13)

where Tvib is the vibronic coherence time and φ is the phase
of the oscillation. Fitted values of Tvib for each transition are
shown in Fig. 4(b), which exhibit (longer) shorter vibronic
coherence times for the (horizontally) vertically polarized
transitions in accordance with their differing damping rates
γ2 = 0.03ω2 and 0.05ω2, respectively.

We next investigate the general dependence of vibronic
oscillations in SHB spectra on the damping parameter γ2. The
integrated central peak and sideband evolutions are plotted
in Fig. 5(a) for γ2 increasing from 0.01ω2 to 0.09ω2. Fitted
values of Tvib for both peaks are then plotted in Fig. 5(b),
which agree well. One may thus relate measured values of
Tvib to an underlying damping rate γ2 via comparison to
simulation. A complementary quantity that may be used to
quantify γ2 is the oscillation phase. In Fig. 5(c) the difference
between the sideband phase φSB and central peak phase φCentral

is plotted, which decreases linearly with increasing γ2. This
quantity is more robust than the individually fitted phases φSB
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FIG. 4. (a) Integrated h̄ωt = −ω2 sideband intensity evolution at
4 K of horizontally (top) and vertically polarized (bottom) transitions
as a function of waiting time T . (b) Fitted values of the vibronic
coherence time Tvib for each transition.

and φCentral (plotted inset), which are susceptible to changes in
the global phase of the nonlinear signal [29].

E. Three-dimensional coherent spectroscopy

We now discuss the most general MDCS technique, three-
dimensional coherent spectroscopy (3DCS), capable of ex-
tracting the maximum amount of information from a system’s
third-order optical response [30,31]. 3DCS involves acqui-
sition of three-dimensional spectral solids along absorption
and emission energy axes h̄ωτ and h̄ωt in addition to a third
mixing energy axis h̄ωT . As the notation suggests, 3DCS is
performed by acquisition of one-quantum spectra as a func-
tion of delay T and subsequent Fourier transform. By taking
cross sections of the three-dimensional spectral solid, called

FIG. 5. (a) Evolution of the integrated central peak and sideband
intensities at 4 K as a function of T for γ2 varying from 0.01ω2

(top curves) to 0.09ω2 (bottom curves). (b) Values of Tvib fitted from
the curves in (a). (c) Phase difference between sideband and central
peak oscillations. Inset shows fitted values of the central peak (filled
circles) and sideband (open circles) oscillation phases.

coherence maps [shown in Fig. 6(a)], vibronic signatures may
be isolated with exceptional clarity [32].

In Figs. 6(b)–6(f), coherence maps taken along ωT = 0 and
the vibrational frequencies ±ω1 and ±ω2 are plotted. First,
the zero-frequency coherence map shown in Fig. 6(b) is pri-
marily composed of a central peak at (ωτ , ωt ) = (−ωeg, ωeg)
with minimal vibronic signatures. Zero-frequency coherence
maps are therefore ideal for isolating dephasing and relax-
ation dynamics of bare electronic transitions. Next, coherence
maps along ωT = ±ω1 are plotted in Figs. 6(c) and 6(d),
in which weak vibronic features appear adjacent to the cen-
tral (ωτ , ωt ) = (−ωeg, ωeg) peak at absorption and emission
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FIG. 6. (a) Schematic of three-dimensional spectral solid composed of coherence map cross sections along ωT . (b)–(f) Magnitude
coherence maps taken at 150 K along ωT = 0, ±ω1, and ±ω2 as indicated. Dotted and dashed lines in (c)–(d) and (e)–(f) indicate locations of
h̄ωeg ± ω1 and h̄ωeg ± ω2, respectively.

frequencies ωeg ± ω1 (indicated by the dotted lines). In con-
trast, coherence maps along ωT = ±ω2 exhibit extremely
strong vibronic resonances at absorption and emission fre-
quencies ωeg ± ω2 in distinct patterns.

To understand the coherence map peak structure in
Figs. 6(e) and 6(f), we model our system using an equiv-
alent displaced oscillator model in which transitions occur
between ground and excited ladders of states separated by the
vibrational energy h̄ω2 [shown in Fig. 7(a)]. Transition dipole
moments between initial and final states of m and n vibrational
excitations, respectively, are proportional to the vibrational
wave function overlap integral [33]:

F m
n = e−s2 sn−m

2

(
m!

n!

)
Ln−m

m (s2)2, (14)

where Ln−m
m are the associated Laguerre polynomials. Because

the overlap integral decreases with increasing vibrational ex-
citation number (for s2 < 1, which is the case here), we retain
only the lowest two states in each ground- and excited-state
manifold {|g〉, |g̃〉} and {|e〉, |ẽ〉}, respectively.

For the effective 4-level system shown in Fig. 7(a), ab-
sorption and emission can occur at the transition frequency
ωeg in addition to ωeg ± ω2 [indicated in Fig. 7(b)]. More
specifically, if the initial density matrix element is a ground-
state population |g〉〈g| there are eight total third-order quan-
tum pathways which involve an intermediate vibrational co-
herence during delay T . The eight numbered diagrams are
shown in Fig. 7(c), with their corresponding peak positions

indicated in Fig. 7(b). We may then directly relate the peak
structure predicted by this diagrammatic approach to the
peaks observed in Figs. 6(e) and 6(f). The negative mixing
frequency diagrams (3–8) and positive mixing frequency di-
agrams (1–2) appear in a characteristic chair-shape pattern
[32] which directly mirrors the peak positions of Figs. 6(e)
and 6(f), respectively. By taking ratios between coherence
map peak intensities, the Huang-Rhys factor may be extracted
by summing Feynman diagram amplitudes determined by
Eq. (14).

Interestingly, the coherence maps shown in Figs. 6(c) and
6(d) do not exhibit the same clear vibronic peak structure. This
is due to a transition between the different damping regimes
of each vibrational mode, defined by a quantity 2λ

βγ 2 . The two

limiting cases are the slow-decay regime 2λ
βγ 2 � 1, in which

coherent oscillations of the dephasing line shape occur and
give rise to vibronic sidebands [34], and the fast-decay regime

2λ
βγ 2 	 1, in which such oscillations are largely damped and
homogeneous broadening of the bare electronic transition
occurs [21]. For the simulation temperature of 150 K in
Fig. 6, we have 2λ1

βγ 2
1

= 0.36 (fast decay) and 2λ2

βγ 2
2

= 10.37
(slow decay) which explains the difference between vibronic
signatures of each mode. To characterize vibrational modes in
the fast-decay regime, temperature-dependent measurements
of the homogeneous linewidth may be performed. For ex-
ample, linewidth measurements performed on single SiV−

centers [35] have reported a linear increase with tempera-
ture up to tens of kelvins and a T 3 dependence at higher
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FIG. 7. (a) Displaced oscillator model consisting of ground and
excited electronic state harmonic potentials along a vibrational co-
ordinate q. (b) Schematic coherence map showing peak positions
of each numbered Feynman diagram. (c) Feynman diagrams in-
volving intermediate vibrational coherences during delay T . Purple
(italicized) and blue (nonitalicized) numbers indicate positive and
negative frequency vibrational coherences, respectively.

temperatures. We note, however, that the nonlinear tempera-
ture dependence at higher temperatures occurs due to phonon-
assisted transitions between electronic sublevels. The elec-
tronic two-level system studied here reproduces the linear
scaling of the linewidth at low temperatures, but therefore
does not capture the power-law dependence at higher temper-
atures (which has been the topic of extensive study elsewhere
[35–39]).

In addition, recent fluorescence studies of SiV− centers in
nanodiamonds have reported distinct sidebands of undeter-
mined origin, which could be attributed to electron-phonon
coupling or strain-shifted electronic transitions [40]. By re-
solving quantum pathways in three dimensions, coherence
map analysis may distinguish between electronic and vibronic
coherences of comparable energy scales [41].

F. Inhomogeneous broadening

The simulations performed here have assumed no inho-
mogeneous broadening of electronic transitions, which ap-
plies to single defect experiments, and is otherwise a good
assumption for ensembles under low-strain conditions [23].
Under such ideal conditions, linear fluorescence spectra suf-
fice to characterize phonon energies and Huang-Rhys fac-
tors in the coherent-coupling limit. However, strain is often
introduced unavoidably during sample fabrication [40] or
even intentionally to achieve long coherence times above
dilution-refrigerator temperatures [42]. Even under low-strain
conditions, however, weakly fluorescent SiV− centers have
been found to exhibit differing degrees of inhomogeneous
broadening [43]. In these situations, nonlinear spectroscopies
such as 2DCS and 3DCS are required to characterize possible
strain-dependent phonon energies and coupling strengths of
the inhomogeneous distribution [9,15]. Indeed, the feasibility
of such experiments has been proven by recent application of
FWM techniques on SiV− ensembles [44] to perform coher-
ent control in the presence of inhomogeneous broadening.

IV. CONCLUSION

In this paper, we have presented simulated optical spectra
of SiV− centers coupled to vibrational modes of discrete
energy. We demonstrate that nonlinear spectroscopic tech-
niques, namely transient-absorption and multidimensional co-
herent spectroscopy, may be used to completely characterize
the spectral density of coherent coupling to a vibrational
mode of energy h̄ω2 = 63.19 meV. However, coupling to the
other dominant vibrational mode of energy h̄ω1 = 37 meV is
strongly damped and must be characterized via temperature-
dependent linewidth measurements. We also demonstrate the
ability of TA and MDCS to resolve differences in electron-
phonon coupling between adjacent transitions in the SiV− fine
structure. Our study provides a road map for experimental
characterization of electron-phonon coupling in SiV− centers,
which may be translated to other inversion-symmetric color
center systems such as germanium [45] or tin [46] vacancy
centers in diamond.

ACKNOWLEDGMENT

We thank R. Ulbricht for careful reading and critique of the
manuscript.

[1] F. Karsai, M. Engel, E. Flage-Larsen, and G. Kresse, New J.
Phys. 20, 123008 (2018).

[2] A. Liu, L. G. Bonato, F. Sessa, D. B. Almeida, E. Isele, G.
Nagamine, L. F. Zagonel, A. F. Nogueira, L. A. Padilha, and
S. T. Cundiff, J. Chem. Phys. 151, 191103 (2019).

[3] F. Giustino, Rev. Mod. Phys. 89, 015003
(2017).

[4] P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon,
and R. G. Beausoleil, Phys. Rev. X 1, 011007
(2011).

055202-8

https://doi.org/10.1088/1367-2630/aaf53f
https://doi.org/10.1088/1367-2630/aaf53f
https://doi.org/10.1088/1367-2630/aaf53f
https://doi.org/10.1088/1367-2630/aaf53f
https://doi.org/10.1063/1.5124399
https://doi.org/10.1063/1.5124399
https://doi.org/10.1063/1.5124399
https://doi.org/10.1063/1.5124399
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/PhysRevX.1.011007
https://doi.org/10.1103/PhysRevX.1.011007
https://doi.org/10.1103/PhysRevX.1.011007
https://doi.org/10.1103/PhysRevX.1.011007


SPECTROSCOPIC SIGNATURES OF ELECTRON-PHONON … PHYSICAL REVIEW MATERIALS 4, 055202 (2020)

[5] L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M.
Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer
et al., Phys. Rev. Lett. 113, 263602 (2014).

[6] D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar,
R. E. Evans, F. Jelezko, and M. D. Lukin, Phys. Rev. Lett. 119,
223602 (2017).

[7] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 1st
ed. (Oxford University Press, New York, 1999).

[8] A. Nitzan, Chemical Dynamics in Condensed Phases: Relax-
ation, Transfer, and Reactions in Condensed Molecular Systems,
1st ed. (Oxford University Press, New York, 2006).

[9] A. Liu, D. B. Almeida, W.-K. Bae, L. A. Padilha, and S. T.
Cundiff, J. Phys. Chem. Lett. 10, 6144 (2019).

[10] J. Pieper, M. Rätsep, I. Trostmann, H. Paulsen, G. Renger, and
A. Freiberg, J. Phys. Chem. B 115, 4042 (2011).

[11] A. Kell, X. Feng, M. Reppert, and R. Jankowiak, J. Phys. Chem.
B 117, 7317 (2013).

[12] P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, Phys.
Rev. B 67, 201307(R) (2003).

[13] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, New
York, 2008).

[14] L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, Phys.
Rev. B 75, 125302 (2007).

[15] J. Seibt, T. Hansen, and T. Pullerits, J. Phys. Chem. B 117,
11124 (2013).

[16] P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared
Spectroscopy, 1st ed. (Cambridge University Press, Cambridge,
UK, 2011).

[17] P. W. Milonni, Phys. Rep. 25, 1 (1976).
[18] S. T. Cundiff, J. Opt. Soc. Am. B 29, A69 (2012).
[19] L. J. Rogers, K. D. Jahnke, T. Teraji, L. Marseglia, C. Müller,

B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. P.
McGuinness et al., Nat. Commun. 5, 4739 (2014).

[20] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[21] V. Butkus, L. Valkunas, and D. Abramavicius, J. Chem. Phys.
137, 044513 (2012).

[22] C. D. Clark, H. Kanda, I. Kiflawi, and G. Sittas, Phys. Rev. B
51, 16681 (1995).

[23] C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault,
H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze,
M. Atatüre et al., Phys. Rev. Lett. 112, 036405 (2014).

[24] A. Norambuena, S. A. Reyes, J. Mejía-Lopéz, A. Gali, and J. R.
Maze, Phys. Rev. B 94, 134305 (2016).

[25] A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J.
Rogers, and F. Jelezko, New J. Phys. 16, 113019 (2014).

[26] C. L. Smallwood, T. M. Autry, and S. T. Cundiff, J. Opt. Soc.
Am. B 34, 419 (2017).

[27] R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 104, 14190
(2007).

[28] G. Bartels, G. C. Cho, T. Dekorsy, H. Kurz, A. Stahl, and
K. Köhler, Phys. Rev. B 55, 16404 (1997).

[29] A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, Opt.
Express 16, 18017 (2008).

[30] H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T.
Cundiff, Nat. Commun. 4, 1390 (2013).

[31] S. T. Cundiff, Phys. Chem. Chem. Phys. 16, 8193 (2014).
[32] V. R. Policht, A. Niedringhaus, and J. P. Ogilvie, J. Phys. Chem.

Lett. 9, 6631 (2018).
[33] M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, Phys.

Chem. Chem. Phys. 17, 16959 (2015).
[34] A. Liu, D. B. Almeida, W. K. Bae, L. A. Padilha, and S. T.

Cundiff, Phys. Rev. Lett. 123, 057403 (2019).
[35] K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty,

M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F.
Jelezko, New J. Phys. 17, 043011 (2015).

[36] V. Hizhnyakov and P. Reineker, J. Chem. Phys. 111, 8131
(1999).

[37] V. Hizhnyakov, H. Kaasik, and I. Sildos, Phys. Status Solidi B
234, 644 (2002).

[38] K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B.
Manson, and R. G. Beausoleil, Phys. Rev. Lett. 103, 256404
(2009).

[39] E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer,
H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and
C. Becher, New J. Phys. 15, 043005 (2013).

[40] S. Lindner, A. Bommer, A. Muzha, A. Krueger, L. Gines,
S. Mandal, O. Williams, E. Londero, A. Gali, and C. Becher,
New J. Phys. 20, 115002 (2018).

[41] J. Seibt and T. Pullerits, J. Phys. Chem C 117, 18728
(2013).

[42] Y.-I. Sohn, S. Meesala, B. Pingault, H. A. Atikian, J. Holzgrafe,
M. Gündogan, C. Stavrakas, M. J. Stanley, A. Sipahigil, J. Choi
et al., Nat. Commun. 9, 2012 (2018).

[43] C. L. Smallwood, M. W. Day, T. M. Autry, G. Diederich,
R. Ulbricht, T. Schröder, E. Bielejec, M. E. Siemens, and
S. T. Cundiff, in Conference on Lasers and Electro-Optics
(Optical Society of America, San Jose, CA, 2018), http:
//www.osapublishing.org/abstract.cfm?URI=CLEO_QELS-
2018-FF3D.1.

[44] C. Weinzetl, J. Görlitz, J. N. Becker, I. A. Walmsley, E.
Poem, J. Nunn, and C. Becher, Phys. Rev. Lett. 122, 063601
(2019).

[45] M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J.
Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch,
H. Park et al., Phys. Rev. Lett. 118, 223603 (2017).

[46] M. E. Trusheim, B. Pingault, N. H. Wan,
M. Gündogan, L. De Santis, R. Debroux, D. Gangloff,
C. Purser, K. C. Chen, M. Walsh et al., Phys. Rev. Lett. 124,
023602 (2020).

055202-9

https://doi.org/10.1103/PhysRevLett.113.263602
https://doi.org/10.1103/PhysRevLett.113.263602
https://doi.org/10.1103/PhysRevLett.113.263602
https://doi.org/10.1103/PhysRevLett.113.263602
https://doi.org/10.1103/PhysRevLett.119.223602
https://doi.org/10.1103/PhysRevLett.119.223602
https://doi.org/10.1103/PhysRevLett.119.223602
https://doi.org/10.1103/PhysRevLett.119.223602
https://doi.org/10.1021/acs.jpclett.9b02474
https://doi.org/10.1021/acs.jpclett.9b02474
https://doi.org/10.1021/acs.jpclett.9b02474
https://doi.org/10.1021/acs.jpclett.9b02474
https://doi.org/10.1021/jp111455g
https://doi.org/10.1021/jp111455g
https://doi.org/10.1021/jp111455g
https://doi.org/10.1021/jp111455g
https://doi.org/10.1021/jp405094p
https://doi.org/10.1021/jp405094p
https://doi.org/10.1021/jp405094p
https://doi.org/10.1021/jp405094p
https://doi.org/10.1103/PhysRevB.67.201307
https://doi.org/10.1103/PhysRevB.67.201307
https://doi.org/10.1103/PhysRevB.67.201307
https://doi.org/10.1103/PhysRevB.67.201307
https://doi.org/10.1103/PhysRevB.75.125302
https://doi.org/10.1103/PhysRevB.75.125302
https://doi.org/10.1103/PhysRevB.75.125302
https://doi.org/10.1103/PhysRevB.75.125302
https://doi.org/10.1021/jp4011444
https://doi.org/10.1021/jp4011444
https://doi.org/10.1021/jp4011444
https://doi.org/10.1021/jp4011444
https://doi.org/10.1016/0370-1573(76)90037-5
https://doi.org/10.1016/0370-1573(76)90037-5
https://doi.org/10.1016/0370-1573(76)90037-5
https://doi.org/10.1016/0370-1573(76)90037-5
https://doi.org/10.1364/JOSAB.29.000A69
https://doi.org/10.1364/JOSAB.29.000A69
https://doi.org/10.1364/JOSAB.29.000A69
https://doi.org/10.1364/JOSAB.29.000A69
https://doi.org/10.1038/ncomms5739
https://doi.org/10.1038/ncomms5739
https://doi.org/10.1038/ncomms5739
https://doi.org/10.1038/ncomms5739
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1063/1.4737843
https://doi.org/10.1063/1.4737843
https://doi.org/10.1063/1.4737843
https://doi.org/10.1063/1.4737843
https://doi.org/10.1103/PhysRevB.51.16681
https://doi.org/10.1103/PhysRevB.51.16681
https://doi.org/10.1103/PhysRevB.51.16681
https://doi.org/10.1103/PhysRevB.51.16681
https://doi.org/10.1103/PhysRevLett.112.036405
https://doi.org/10.1103/PhysRevLett.112.036405
https://doi.org/10.1103/PhysRevLett.112.036405
https://doi.org/10.1103/PhysRevLett.112.036405
https://doi.org/10.1103/PhysRevB.94.134305
https://doi.org/10.1103/PhysRevB.94.134305
https://doi.org/10.1103/PhysRevB.94.134305
https://doi.org/10.1103/PhysRevB.94.134305
https://doi.org/10.1088/1367-2630/16/11/113019
https://doi.org/10.1088/1367-2630/16/11/113019
https://doi.org/10.1088/1367-2630/16/11/113019
https://doi.org/10.1088/1367-2630/16/11/113019
https://doi.org/10.1364/JOSAB.34.000419
https://doi.org/10.1364/JOSAB.34.000419
https://doi.org/10.1364/JOSAB.34.000419
https://doi.org/10.1364/JOSAB.34.000419
https://doi.org/10.1073/pnas.0704079104
https://doi.org/10.1073/pnas.0704079104
https://doi.org/10.1073/pnas.0704079104
https://doi.org/10.1073/pnas.0704079104
https://doi.org/10.1103/PhysRevB.55.16404
https://doi.org/10.1103/PhysRevB.55.16404
https://doi.org/10.1103/PhysRevB.55.16404
https://doi.org/10.1103/PhysRevB.55.16404
https://doi.org/10.1364/OE.16.018017
https://doi.org/10.1364/OE.16.018017
https://doi.org/10.1364/OE.16.018017
https://doi.org/10.1364/OE.16.018017
https://doi.org/10.1038/ncomms2405
https://doi.org/10.1038/ncomms2405
https://doi.org/10.1038/ncomms2405
https://doi.org/10.1038/ncomms2405
https://doi.org/10.1039/C4CP00176A
https://doi.org/10.1039/C4CP00176A
https://doi.org/10.1039/C4CP00176A
https://doi.org/10.1039/C4CP00176A
https://doi.org/10.1021/acs.jpclett.8b02691
https://doi.org/10.1021/acs.jpclett.8b02691
https://doi.org/10.1021/acs.jpclett.8b02691
https://doi.org/10.1021/acs.jpclett.8b02691
https://doi.org/10.1039/C5CP02093J
https://doi.org/10.1039/C5CP02093J
https://doi.org/10.1039/C5CP02093J
https://doi.org/10.1039/C5CP02093J
https://doi.org/10.1103/PhysRevLett.123.057403
https://doi.org/10.1103/PhysRevLett.123.057403
https://doi.org/10.1103/PhysRevLett.123.057403
https://doi.org/10.1103/PhysRevLett.123.057403
https://doi.org/10.1088/1367-2630/17/4/043011
https://doi.org/10.1088/1367-2630/17/4/043011
https://doi.org/10.1088/1367-2630/17/4/043011
https://doi.org/10.1088/1367-2630/17/4/043011
https://doi.org/10.1063/1.480147
https://doi.org/10.1063/1.480147
https://doi.org/10.1063/1.480147
https://doi.org/10.1063/1.480147
https://doi.org/10.1002/1521-3951(200211)234:2<644::AID-PSSB644>3.0.CO;2-E
https://doi.org/10.1002/1521-3951(200211)234:2<644::AID-PSSB644>3.0.CO;2-E
https://doi.org/10.1002/1521-3951(200211)234:2<644::AID-PSSB644>3.0.CO;2-E
https://doi.org/10.1002/1521-3951(200211)234:2<644::AID-PSSB644>3.0.CO;2-E
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1088/1367-2630/15/4/043005
https://doi.org/10.1088/1367-2630/15/4/043005
https://doi.org/10.1088/1367-2630/15/4/043005
https://doi.org/10.1088/1367-2630/15/4/043005
https://doi.org/10.1088/1367-2630/aae93f
https://doi.org/10.1088/1367-2630/aae93f
https://doi.org/10.1088/1367-2630/aae93f
https://doi.org/10.1088/1367-2630/aae93f
https://doi.org/10.1021/jp406103m
https://doi.org/10.1021/jp406103m
https://doi.org/10.1021/jp406103m
https://doi.org/10.1021/jp406103m
https://doi.org/10.1038/s41467-018-04340-3
https://doi.org/10.1038/s41467-018-04340-3
https://doi.org/10.1038/s41467-018-04340-3
https://doi.org/10.1038/s41467-018-04340-3
http://www.osapublishing.org/abstract.cfm?URI=CLEO_QELS-2018-FF3D.1
https://doi.org/10.1103/PhysRevLett.122.063601
https://doi.org/10.1103/PhysRevLett.122.063601
https://doi.org/10.1103/PhysRevLett.122.063601
https://doi.org/10.1103/PhysRevLett.122.063601
https://doi.org/10.1103/PhysRevLett.118.223603
https://doi.org/10.1103/PhysRevLett.118.223603
https://doi.org/10.1103/PhysRevLett.118.223603
https://doi.org/10.1103/PhysRevLett.118.223603
https://doi.org/10.1103/PhysRevLett.124.023602
https://doi.org/10.1103/PhysRevLett.124.023602
https://doi.org/10.1103/PhysRevLett.124.023602
https://doi.org/10.1103/PhysRevLett.124.023602

