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Multidimensional terahertz probes of
quantummaterials
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Multidimensional spectroscopy has a long history originating from nuclear magnetic resonance, and
hasnow foundwidespreadapplication at infraredandoptical frequencies aswell. However, theenergy
scales of traditional multidimensional probes have been ill-suited for studying quantum materials.
Recent technological advancements have now enabled extension of these multidimensional
techniques to the terahertz frequency range, in which collective excitations of quantum materials are
typically found. This Perspective introduces the techniqueof two-dimensional terahertz spectroscopy
(2DTS) and the unique physics of quantum materials revealed by 2DTS spectra, accompanied by a
selection of the rapidly expanding experimental and theoretical literature. While 2DTS has so far been
primarily applied to quantummaterials at equilibrium,weprovide anoutlook for its application towards
understanding their dynamical non-equilibrium states and beyond.

The physics of quantum materials is one of the frontiers of modern con-
densed matter physics1. It presents a broad, formidable challenge, in par-
ticular due to the interaction of numerous degrees of freedom and their
dynamicalfluctuations, yet resolving thesemicroscopic physics promises an
unprecedented understanding of these quantum materials. How quantum
materials cross phase boundaries in equilibrium, and how they are driven
into new phases of matter with no equilibrium counterpart are questions
essential to realizing their imaginable functionalities2,3.

To this end, important messengers of the underlying physics are
changes in their excitation spectra that accompany structural and electronic
rearrangements, which typically occur in the terahertz (1012 Hz) frequency
range4,5. Yet our understanding and exploitation ofmaterial properties in the
terahertz frequency range has been hindered by the challenges of generating,
detecting, and manipulating light at these frequencies6 for spectroscopic
applications. In particular, many aspects of coupling between different
degrees of freedom, complex many-body interactions, and dynamical phe-
nomena remain hidden in conventional terahertz spectroscopies7–9 sensitive
only to two-point correlations of relevant observables.

In contrast, sophisticated techniques have been developed at micro-
wave frequencies for nuclear magnetic resonance (NMR) spectroscopy10,11

to access higher-order correlations of spin degrees of freedom. Various
excitation schemes are routinely used to distill material nonlinearities, and
have also been translated to the visible and near-infrared frequency
ranges12,13. In particular, multidimensional coherent spectroscopy at optical
frequencies14 has emerged as the preeminent method for disentangling
complex electronic dynamics in chemical and biological systems15, allowing
spectroscopists to dissect material nonlinearities into their individual con-
stituent terms16.

Significant efforts have now been made to extend multidimensional
techniques into the terahertz frequency range towards two-dimensional
terahertz spectroscopy (2DTS)17. Since its first demonstration over a decade
ago18, the growing accessibility of strong-field terahertz light sources has led
to applications of 2DTS in a wide variety of material systems19–30. But per-
haps their most intriguing applications lie in quantum materials, whose
spectacular emergent properties arise precisely from the electronic corre-
lations that 2DTS excels at resolving. In this Perspective,we introduce 2DTS
as a powerful new technique for studying the intrinsic properties of quan-
tum materials and discuss future opportunities for applying 2DTS as an
ultrafast probe of quantummaterials dynamically driven out of equilibrium
with light31.

Basics of 2-D terahertz spectroscopy
The basics of 2-D spectroscopy at infrared and optical frequencies are well-
established and has been described extensively in the literature from a
quantum level-system perspective12,13. On the contrary, low-energy collec-
tive excitations of quantum materials are often described by effective
coordinates and their equations ofmotion4.Our starting pointwill therefore
be the generic potential energy of a coordinate x, which takes the form:

UðxÞ ¼ 1
2
ω2
0x

2 þ z�xEðtÞ þ Uanh ð1Þ

where ω0 is its resonance frequency dictated by the harmonic potential and
z* is the effective charge that determines dipolar coupling of the coordinate
to an external time-dependent electricfieldE(t). In the followingwe provide
a brief introduction to the nonlinearities of a classical oscillator and their
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corresponding 2-D spectra, which will then lend intuition to the unique
physics underlying various features that we describe later.

Self-anharmonicity
As a heuristic example, we take a quartic potential nonlinearity of the form:

UanhðxÞ ¼ � 1
4
ax4; ð2Þ

where a is an anharmonic coefficient that determines the strength of the
nonlinearity. We will assume the case of a ‘soft spring’ (a > 0), which
describes, for example, the Josephson plasma resonance in layered
superconductors32–34.

In its most common realization, 2DTS involves two identical terahertz
excitation pulses (denoted EA and EB) that cooperatively drive a nonlinear
response of the coordinate (shown in Fig. 1a). This nonlinear signal is then
generically a function of two variables, the inter-pulse time delay τ and the
real laboratory time t that evolves following interaction with the second
pulseEB. In the harmonic oscillator limit (a= 0), the superposition principle
dictates that the coordinate response to EA+ EB is simply the summation of
the individual responses to EA and EB alone.With the nonlinearity included
however, the superposition principle is broken by a displacement-
dependent resonance frequency35

ω2ðxÞ ¼ ω2
0 � ax2: ð3Þ

Despite the simple nature of the underlying quartic potential, an infinite
hierarchy of nonlinear coordinate responses scaling with En

AE
m
B (where n+

m is odd) results to arbitrary order36. Here we will only consider the most

commonly measured third-order (n + m = 3) coordinate response
composed of six contributing nonlinearities, four that emit at the
fundamental resonance frequency ω0 and two that emit at triple its value
3ω0 (third-harmonic generation). We further restrict our focus to only the
four former terms, as the third-harmonic nonlinearities typically contain
redundant information34.

To interpret such impulsive nonlinearities, it is most natural to con-
sider the dynamics driven by EA and EB sequentially. Beginning with the
arrival of EA, its interaction with the system results in two primary con-
sequences for the subsequent interactionwithEB a time τ later (illustrated in
Fig. 1b). First, it can immediately be seen from (3) that the resonance
frequency is both rectified andmodulated at twice the resonance frequency
2ω0

37. Second, EA introduces a time-dependent initial condition that either
enhances or suppresses the response toEB (beyonda simple superpositionof
the two individual responses). To emphasize, these nonlinearities occur
simultaneously and share a common response frequency ωt = ω0, resulting
in overlapping signatures in one-dimensional spectra. As will be shown in
the following however, this ambiguity is lifted in a two-dimensional
spectrum.

Two-dimensional spectrum
To isolate the nonlinearities cooperatively driven by both EA and EB from
their individual responses, one measures a nonlinear signal defined by

xNLðτ; tÞ ¼ xðτ; tÞjAon;Bon � xðτ; tÞjAon;Boff � xðτ; tÞjAoff ;Bon: ð4Þ

The equationofmotion resulting from(2)maybe straightforwardly solved36

as a function of {τ, t} to obtain xNL(τ, t), which exhibits complex oscillatory
dynamics along both time axes as shown in Fig. 1c. Interpretation of these
dynamics is difficult in the time-domain, but becomes tractable in the
frequency-domain. To this end, two-dimensional Fourier transform of
xNL(τ, t) correlates the dynamics along τ and t in a two-dimensional (2-D)
spectrum shown in Fig. 1d.

In the two-dimensional (2-D) spectrum, four peaks appear at a
response frequency ωt = ω0, corresponding to the four nonlinearities
described above. Twopeaks appear at delay frequenciesωτ=0 andωτ=2ω0,
corresponding to rectification and parametric modulation of the resonance
frequency, and are denoted the ‘Pump-Probe’ and ‘Two-Quantum’ peaks
respectively. The two other peaks appearing at ωτ = ω0 and ωτ =− ω0 then
arise from in-phase or out-of-phasemodulation (by thefirst excitationpulse
EA) of the nonlinear signal (stimulated by the second excitation pulse EB),
and are denoted the ‘non-rephasing’ and ‘rephasing’ peaks respectively.
These nonlinearities, illustrated in Fig. 1b and designated with terminology
borrowed fromatomic andmolecular physics12,13, are summarized inTable 1
along with their excitation field scaling (in terms of positive and negative
frequency components EA/Be

iωt and E�
A=Be

�iωt) and frequency coordinates.
We emphasize that, despite the apparent simplicity of (2), these spectral
features are generic for the third-order nonlinearity of an anharmonic
oscillator and bear direct correspondence to their quantum level system
counterparts. The classical description of their underlying mechanisms
described here then lends intuition to how the various physics of quantum
materials manifest in different features of a 2DTS spectrum, which will be
the focus of the following section.

2DTS of quantum materials: in equilibrium
In the previous section, we considered an anharmonic oscillator whose
nonlinearity derives solely from a quartic potential nonlinearity. While
instructive, thismodel cannever realistically capture thephysics of quantum
materials. For example, collective excitations in real solids are dispersive, are
affected by thermalfluctuations, couple to otherdegreesof freedom, and can
suffer from material disorder. While such complications are difficult to
disentangle with conventional spectroscopic probes, their effects naturally
separate into unique features in a 2-D spectrum.

Fig. 1 | Classical view of two-dimensional terahertz spectroscopy. a Terahertz
excitation pulse sequence involving two nominally identical fields EA and EB sepa-
rated by a time delay τ. A nonlinear signal xNL then evolves along the real laboratory
time t.b Illustrations of the four third-order nonlinearities with a response frequency
of ω0 that result from a soft quartic anharmonicity. Note that the two remaining
third-harmonic generation nonlinearities occur, but are not shownhere. cNonlinear
signal xNL in the time-domain as a function of {τ, t}, which exhibits intricate oscil-
latory behavior due to interference between the multiple nonlinearities. d Fourier
transform of the time-domain signal in c, showing four distinct peaks corresponding
to the four nonlinearities illustrated in b as indicated.
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Different peaks, different physics
In 2-D spectra of quantummaterials, different aspects of their microscopic
physics distort specific peaks away from their generic forms shown in Fig.
1d. Examples of such phenomena are illustrated in Fig. 2 and summarized
below for each peak.

Two-quantum (2Q). The two-quantum nonlinearity, as its name sug-
gests, tracks dynamics evolving at (or near) twice the excitation photon
frequency. These dynamics may arise classically, for example from
parametric modulation of the resonance frequency (as illustrated in
Fig. 1b). They may also be of quantum mechanical origin, arising from
quantum coherences between two quasiparticle excitations and an
unoccupied ground state38. Such two-quantum nonlinearities have been
observed, for example, for magnetic excitations in orthoferrites39,40 and
Josephson plasmons in layered cuprates28. In quantum materials, the
two-quantum nonlinearity is particularly important for probingmaterial
anharmonicities41, which can result in bound states of collective excita-
tions such as bimagnons42 or biphonons43. As illustrated in Fig. 2, for a
binding energy ℏδ exceeding the resonance linewidth, the two-quantum
nonlinearity (1) shifts vertically along ωτ by δ and (2) splits horizontally
along ωt into two peaks separated by δ. The two resultant peaks then
correspond to a transition back into the unoccupied ground state (ωt =
ω0) and dissociation of the collective bound state into single quasi-
particles (ωt = ω0 − δ).

Non-rephasing (NR). The non-rephasing nonlinearity is the strongest
nonlinearity for a classical anharmonic oscillator, as in-phase excitation
between EA and EB cooperatively drive the coordinate to the largest
amplitude (strongest effect of anharmonicity). Besides its role in gen-
erating absorptive 2-D spectra (useful when conventional 2-D spectra are
congested with overlapping peaks44), the non-rephasing nonlinearity is
also sensitive to fluctuating order. In a recent theoretical study, Salvador
et al. have predicted34 non-rephasing 2-D spectra of the Josephson plasma
resonance to contain signatures of superconducting fluctuations. To see
this, onemust consider a nonlinear excitation process (beyond themean-
field approximation) illustrated in the top right panel of Fig. 2, in which
two electric field interactions drive pairs of finite-momentum plasma
waves at equal and opposite momenta45. In the corresponding non-
rephasing 2-D spectrum, a symmetric peak is observed whose peak
position is fixed by the driving frequency (ωτ,ωt) = (ωd,ωd) due to energy
conservation. This is in stark contrast to the spectrumpredicted bymean-
field theory for a damped oscillator, which exhibits a peak whose line-
shape directly follows the linear loss function34 (centered at the plasma
frequency ω0). We anticipate the non-rephasing nonlinearity to also be
sensitive to analogous processes of other types of excitations such as
Klemens decay of phonons46 or 3-magnon scattering47.

Pump-probe (PP). As evidenced by its scaling with ∣EA∣2, independent of
excitation phase, the pump-probe nonlinearity encompasses all inco-
herent (non-oscillatory) dynamics. Perhaps the most ubiquitous of such
nonlinearities are thermal effects, in which initial excitation by EA
(typically) raises the electronic temperature to a transient, non-

equilibrium value. The bottom left panel of Fig. 2 illustrates such a
thermal nonlinearity for an ordered system, in which the free energy is
thermally-quenched by optical excitation. The corresponding pump-
probe 2-D spectrum then exhibits a narrow lineshape along the vertical
ωτ axis, reflecting the long timescales of thermal relaxation processes. A
recent experiment by Kim et al. on the cuprate superconductor
La2−xSrxCuO4

48 exploited this ability of 2DTS to separate coherent and
incoherent dynamics, observing a strong pump-probe nonlinearity due
to incoherent breaking of Cooper pairs49 that is spectrally separated from
the coherent order parameter dynamics. We note that in the case of
dominant incoherent optical processes (thermal or otherwise) the pump-
probe nonlinearity will appear alone in 2-D spectra, which has been
observed in varied systems24,26,50,51.

Rephasing (R). The rephasing nonlinearity is most well-known for its
usefulness in studying disorder (being responsible for optical photon
echoes52 and spin echoes in nuclear magnetic resonance53), whichmay be
understood from either a time- or frequency-domain perspective for a
disordered ensemble of oscillators (valid in the limit of strong localiza-
tion). In the time-domain, the first pulse EA coherently excites dynamics
of the ensemble which dephase due to disorder, obscuring their intrinsic

Table 1 | Third-order wave-mixing nonlinearities

Signal Dependence (ωτ, ωt)

Two-Quantum (2Q) E2
AE

�
Be

iω0 ð2τþtÞ (2ω0, ω0)

Non-Rephasing (NR) EAjEBj2eiω0 ðτþtÞ (ω0, ω0)

Pump-Probe (PP) jEAj2EBe
iω0 t (0, ω0)

Rephasing (R) E�
AE

2
Be

iω0 ðt�τÞ (-ω0, ω0)

Third-Harmonic 1 (3H1) E2
AEBe

iω0 ð3tþ2τÞ (2ω0, 3ω0)

Third-Harmonic 2 (3H2) EAE
2
Be

iω0 ð3tþτÞ (ω0, 3ω0)

Fig. 2 | The unique physics of quantummaterials revealed by each peak. Top left:
The two-quantum (2Q) nonlinearity probes doubly-occupied states of a quantum
oscillator, and exhibits unique signatures of quasiparticle bound states of binding
energy δ. Top right: The non-rephasing (NR) nonlinearity is sensitive (though not
uniquely) to finite-momentum fluctuations, resulting in a peak position determined
by the driving frequencyωd rather than the resonance frequencyω0. Bottom left: The
pump-probe (PP) nonlinearity captures all incoherent (non-oscillatory) processes.
Most notably all thermal effects are isolated in this peak, leaving only non-thermal
coherent dynamics elsewhere in the 2-D spectrum. Bottom right: The rephasing
nonlinearity is unique in its sensitivity to disorder. In the absence of disorder the
rephasing peak is symmetric while in the presence of disorder the rephasing peak
elongates as shown.
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lifetime. Arrival of the second pulse EB then performs a time-reversal
operation, reversing the extrinsic dephasing and ‘rephasing’ the ensemble
after a time t = τ. The bottom right panel of Fig. 2 then illustrates the
frequency-domain perspective with both a 1-D spectrum and rephasing
2-D spectrum. In the 1-D spectrum, the resonance lineshape is broadened
by a combination of both intrinsic and extrinsic broadening and one
cannot disentangle the two effects. In the 2-D spectrum, these two
broadening mechanisms are projected into orthogonal directions and
produce an asymmetric ‘almond’ peak shape34,54,55. Recent 2DTS
experiments have exploited this rephasing nonlinearity to measure
intrinsic linewidths in doped silicon23 and to characterize disordered
superconductivity in the cuprate La2−xSrxCuO4

28. Analogous theoretical
proposals have also been put forth toward resolving fractional excitations
in spin liquids56,57.

Beyond third-order nonlinearities
The third-order nonlinearities described above typically capture the most
prominent features observed in 2DTS experiments. However, the intense
excitation employed inmany 2DTS experiments, with peak electric fields in
the kV/cm to MV/cm range, can drive even higher-order nonlinearities
which have been observed in various systems.

An early example of such high-order nonlinearities in 2DTS spectra
was reported by Maag et al. on magnetically-biased quantum wells20.
With application of a magnetic field, the energies of the electron gas are
quantized to Landau levels whose resonance frequencies are indepen-
dent of electron-electron interactions - the celebrated theorem by
Kohn58. Kohn’s theorem can be violated, however, by intense terahertz
excitation. The physical mechanisms responsible were then clarified
using 2DTS, which differed depending on excitation regime. At the
lowest excitation fields, third-order nonlinearities dominate the 2DTS
spectra and are due to band non-parabolicities. With stronger excitation
fields however, fifth-order nonlinearities appear and the nonlinear
optical response is determined by Coulomb effects between the electron
gas and ionic background.

Recently, Huang et al. accessed an even more remarkable regime in
2DTS of the orthoferrite Sm0.4Er0.6FeO3

40. With driving fields in the
MV/cm regime, features appear in 2DTS spectra that arise frommagnon
nonlinearities up to sixth-order, including fourth-, fifth-, and sixth-
harmonic generation. The 2DTS spectra were only reproduced by
simulations including both four-fold magnetic anisotropy and the
Dzyaloshinskii-Moriya interaction, which underscores the exquisite
sensitivity of high-order 2DTS spectra to the subtle physics of complex
magnetic systems.

Coupled resonances
At this point we have considered only a single driven oscillator and its self-
anharmonicities59. In real quantum materials however, anharmonic cou-
pling between different resonances plays an essential role in their material
properties and is also responsible for many of their most intriguing
behaviors60. Such coupling is intricate, usually involving many degrees of
freedom, and is difficult to decipher with one-dimensional spectroscopies.
Disentangling theunderlying couplingmechanisms inquantummaterials is
therefore a primary application of 2DTS, as we will demonstrate in the
following.

As an example, we consider lowest-order anharmonic coupling (in a
centro-symmetric system) between a coordinate x and three coupled
coordinates {x1,x2,x3}, namelyquadratic-linear61 and tri-linear62 couplingof
the form:

Uanhðx1; x2; x3; xÞ ¼ gx21x þ hx2x3x ð5Þ

where g and h are the anharmonic coefficients and the coupled coordinates
{x1, x2, x3} have resonance frequencies {ω1, ω2, ω3} respectively. Symmetry
considerations then require the coordinates {x1, x2, x3} to be infrared-active
and the commmon coordinate x to be Raman-active (z* = 0). As illustrated
in Fig. 3a, {x1, x2, x3} are directly driven by the excitation fields while the
common coordinate x is indirectly driven by anharmonic coupling and the
corresponding force

Fxðx1; x2; x3Þ ¼ � ∂Uanh

∂x
¼ �gx21 � hx2x3; ð6Þ

where the former term gives rise to both a rectified (ω = 0) and second-
harmonic (ω = 2ω1) response while the latter term results in sum/difference
frequency (ω = ω3 ± ω2) responses.

In the most general one-dimensional measurement of coupling in this
system, an initial pulse resonantly excites all three coordinates {x1, x2, x3}
before a subsequent pulsemeasures the response of x via an observable such
as transient reflectivity or transient birefringence. We further assume a
driven condition, in which the nonlinear driving force exceeds the oscilla-
tion period of x. As shown in Fig. 3b, the resultant one-dimensional mea-
surement yields, however, only the response frequencies while providing
minimal information on the underlying coupling mechanisms.

In contrast, the corresponding 2-D spectrum shown in Fig. 3c is far
richer. In addition to the response frequency axis, the dynamics are now
spectrally resolved along the delay frequency axis ωτ to produce two-
dimensional peak structures characteristic of specific couplingmechanisms.

Fig. 3 | Dissecting anharmonic coupling using 2DTS. a Depiction of the probed
coordinate x with a resonance frequency ω0 indirectly excited through coupling to
three driven modes {x1, x2, x3} with resonance frequencies {ω1, ω2, ω3}. Schematic
b one-dimensional and c two-dimensional spectra of the nonlinear response
resulting from the total anharmonic coupling Uanh ¼ gx21x þ hx2x3x. The one-
dimensional spectrum exhibits peaks at various response frequencies ωt that are
ambiguous to the underlying coupling mechanisms, while the 2-D spectrum

provides more intricate peak patterns that inform the underlying drive frequencies.
d Decomposition of the total spectrum shown in c into its two constituent com-
ponents, which exhibit characteristic peak patterns used to identify the coupling
term responsible. Note that the schematic spectra shown in b–d are obtained under
a driven condition, in which the nonlinear driving force exceeds the oscillation
period of x. In the inverse condition, impulsive excitation of x becomes possible and
additional features along ωt = ω0 appear.
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In Fig. 3c, two sets of peaks (outlined by the dotted anddashedboxes) can be
identified as corresponding to the two coupling terms in (5). The peak
pattern of each component, plotted individually in Fig. 3d, may then be
intuitively understood by considering their coordinates along the two fre-
quency axes ωτ and ωt.

Given a set of peaks at a particular response frequency ωt, their cor-
responding coordinates along the delay frequency ωτ indicate the parent
driving frequencies that derive from(6).Thismaybemost easily understood
in the spectrumofUanh= hx2x3x (bottompanel of Fig. 3d), where two peaks
at ωt = ω3 + ω2 appear at corresponding delay frequencies ωτ = + ω3 and
ωτ=+ω2 that unambiguously indicate a sum-frequencygenerationprocess.
The two peaks at ωt = ω3− ω2 likewise appear at ωτ = ω3 and ωτ =− ω2 to
indicate a difference-frequency generation process. These fingerprints of
sum- and difference-frequency generation processes were recently
observed, for example, between magnon modes in YFeO3

63.
The spectrum of Uanh ¼ gx21x (top panel of Fig. 3d) (which can be

intuited as the Uanh = hx2x3x spectrum in the degenerate limit ω3 = ω2), is
interpreted in an analogous fashion. Here, two peaks at ωt = 0 appear at
oppositely-signed frequenciesωτ=+ω1 andωτ=−ω1 to indicate a rectified
response while a single peak appears at ωt = 2ω1 and ωτ = + ω1 due to
second-harmonic generation of a single frequency.

The peak patterns of the two lowest-order coupling terms considered
here may be straightforwardly generalized to other possible coupling
mechanisms in quantum materials. For example, recent experiments have
demonstrated 2DTS as an incisive probe of ‘activated’ coupling involving
phonons27, magnons29, and even betweenmagnons and phonons64. Higher-
order coupling terms65 should provide evenmore distinct signatures in 2-D
spectra while other more exotic coupling mechanisms (not expected from
straightforward symmetry considerations66) will also be interesting direc-
tions of future studies.

Quantum treatment of 2DTS
In the classical treatment of 2DTS applied above, potential anharmonicities
result in six third-order nonlinearities (catalogued in Table 1). These clas-
sical nonlinearities each possess direct counterparts in a quantum treatment
of 2DTS (applicable, in particular, to fermionic23 and fractional
excitations56,57), which is applied ubiquitously to describe multidimensional
spectroscopies at higher energy scales (mid-infrared12 to optical
frequencies14). In the following, we present a quantum description of 2DTS
in qualitative terms to highlight important differences from the classical
picture, and leave a detailed discussion of the formalism to more complete
texts12,13,67.

A quantumdescription of 2DTS typically beginswith the optical Bloch
equations68 for the density matrix ρ of a quantum level system. A pertur-
bative solution of the equations67 then yields an expansion of the density
matrix,

ρðtÞ ¼ ρð0ÞðtÞ þ
X1

n¼1

ρðnÞðtÞ; ð7Þ

where the nth order density matrix ρ(n) involves a corresponding number of
time-ordered field interactions that each induces a transition in the Bra or
Ket of ρ(n). Each sequence of n density matrix elements induced by is
commonly referred to as a quantum pathway, and possible quantum
pathways are conveniently catalogued using so-called double-sided Feyn-
man diagrams.

To construct such diagrams, one begins with an initial density matrix
(here we assume a ground state population ∣0i 0h ∣) that interacts with the
first excitation field. An arrow pointing to the (left)right represents excita-
tion by E(*), while an arrow on the (left)right side of the diagram interacts
with the (Ket)Bra of the density matrix. An arrow pointing (into)out of the
diagram then results in a transition to a (higher)lower energy level, a con-
sequence of the rotating-wave approximation. The resultant density matrix
element evolves along the corresponding experimental time delay - coher-
ences oscillate at the frequency difference of the two states involved, while

populations decay according to their relaxation pathways. Dephasing of
coherences can then be included either phenomenologically12,13 or with a
microscopically-motivated spectral density69,70.

The third-order diagrams for a ladder system comprised of a ground
state ∣0i, singly-excited state ∣1i, and doubly-excited state ∣2i are plotted in
Fig. 4, which can be categorized identically to the classical treatment above
according to their electric field scaling and frequency coordinates inTable 1.
Despite their remarkable similarity, however, we now remark on two
important differences between the quantum and classical pictures. (1) The
strengthof eachdiagram inFig. 4 is determinedby theproduct of fourdipole
moments associated with each density matrix transition (including radia-
tion along the time delay t). One therefore finds that the strengths of the
pump-probe, non-rephasing, and rephasing diagrams are identical in the
quantum picture, in contrast to their unequal strengths in the classical
picture shown in Fig. 1d. (2) Each diagram has a (negative)positive sign for
an (odd)even number of arrows on its right side. The two diagrams con-
tributing to the two-quantumnonlinearity are therefore of opposite polarity

Fig. 4 | Quantum view of two-dimensional terahertz spectroscopy. Double-sided
Feynman diagrams describing possible optical nonlinearities for the three-level
ladder system shown.Diagrams are constructed according to the rules detailed in the
main text, assuming an initial density matrix ∣0i 0h ∣. In the case of two-pulse exci-
tation, each pulse may act either once or twice (contribute one or two field inter-
actions) prior to the time delays τ and t as indicated.
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and cancel38, unless additional interactions such as excitation-induced shift71

(δ≠ 0) or excitation-induced dephasing72 of the ∣2i 1h ∣ coherence break their
equivalence.

2DTS of quantum materials: out of equilibrium
So far we have considered quantum materials in thermodynamic equili-
brium, in which a multitude of quantum phases can be realized by varying
static parameters such as temperature, pressure, and composition. In con-
trast to these traditional methods, recent years have witnessed rapid pro-
gress in dynamic manipulation of quantum materials with light73. Light-
induced ferroelectricity74,75, magnetism76,77, topological switching78–80, and
even putative superconductivity81–83 are all examples of non-thermal phases
that can emerge when quantum materials are pushed out of equilibrium84.
Below, we provide an outlook for applying 2DTS toward understanding
these light-induced phases, as well as the complex interplay of numerous
degrees of freedom that underlie many of these spectacular effects.

Pump-2DTS probe experiments
In most demonstrations of light-induced phenomena, an initial ‘pump’
pulse drives a system into a non-equilibrium state, which is then inter-
rogated by a subsequent ‘probe’ pulse that measures a one-dimensional
(either linear or nonlinear) observable. In this language, onemay generalize
2DTS as a multidimensional probe of transient states that measures its
multidimensional nonlinear optical response.

We illustrate this idea for a hypothetical light-induced phase transition
induced by a pump pulse Epump, in which the final non-equilibrium phase
percolates froman initial disorderedphase at short timescales. Suchultrafast
disorder can then be probed by the rephasing nonlinearity generated by a
subsequent 2DTS pulse sequence resonant with a salient collective mode
frequency ω0 (whether phononic, magnetic, superconducting, or other-
wise), illustrated in Fig. 5 for increasing values of the pump-2DTS probe
time-delay tp−p. Prior to arrival of the pump pulse (tp−p < 0), no ordered
phase exists at thermal equilibrium and a rephasing nonlinearity is absent
for the collective mode that heralds a non-equilibrium ordered phase.
Immediately after excitation by the pump pulse (tp−p > 0), a non-
equilibrium phase forms whose disorder (and that of its concomitant col-
lectivemode) is reflected by an elongated rephasing 2-D spectrum34,54.With
further increasing tp−p, the non-equilibrium phase becomes less disordered
and the rephasing 2-D spectrum becomes correspondingly symmetric. We
remark that thismethodology can only be applied tonon-equilibrium states
that persist for times long enough for each time delay to be varied in the
2DTS probe74,77,85,86.

Besides the rephasing nonlinearity, the other nonlinearities measured
by 2DTS can provide even more information on non-equilibrium phe-
nomena. For example, the pump-probe nonlinearity can isolate thermal
effects such as the melting of competing orders81,87 while the two-quantum
nonlinearity (and its higher-order counterparts) can inform the build-up of

non-thermal correlations88 or loss thereof. Taken together, the information
revealed by a 2DTS probe should ultimately address fundamental questions
about non-equilibrium phase transitions such as their dynamic universality
classes and scaling89, or whether these equilibrium concepts even apply at all
to such radically different timescales.

Perturbative pump experiments
In our final generalization of 2DTS in a non-equilibrium context, we
incorporate the ‘pump’ into part of the 2DTS excitation sequence. In con-
trast to the typical intense pump field that induces drastic changes in
material properties (an overtly non-perturbative response), we consider
relatively weak pump fields and an induced response that is perturbative. In
this regime the microscopic mechanisms leading to light-induced non-
equilibrium phenomena, more specifically the various coupling pathways
between a driven mode and other material degrees of freedom, can be
characterized.

A recent study reported byTaherian et al.90 demonstrates the power of
thismethodology towards studying the underlyingmechanismof the light-
induced state of underdoped YBa2Cu3O6+x, in which the appearance of a
Josephson plasma edge upon optical excitationwas attributed to formation
of a non-equilibrium superconducting state. In these experiments, EA and
EB were tuned to the closely-spaced apical oxygen phonon modes at 17
THz and 20 THz while the nonlinear observable was transient second-
harmonic generation induced by the excitation fields91. The resultant 2-D
spectra revealed unambiguous signatures of Josephson plasma currents
cooperatively excited by both driven phonon modes, identified by the
characteristic peak pattern of a difference-frequency generation process
shown in Fig. 3.

Many other light-induced phenomena result from intricate underlying
mechanisms ambiguous to conventional one-dimensional probes. Non-
equilibrium superconducting-like states in organic solids82,92, ferroelectricity
in SrTiO3

17,74, andmagnetism inYTiO3
77 are all problems thatmay require a

multidimensional probe to disentangle. The additional frequency dimen-
sion in 2-D spectra also provides a more efficient alternative for char-
acterizing pump frequency resonances, typically performed in the
frequency-domain by sweeping the excitation frequency93,94.

Outlook
In this Perspective, we introduced the emerging technique of two-
dimensional terahertz spectroscopy as an incisive probe of quantum
materials, both in and out of equilibrium. Future directions are numerous,
but we conclude with three potential developments of particular
interest to us.

(1) The coherent nature of 2DTS resolves both the real (dispersive) and
imaginary (dissipative) components of the nonlinear optical response95,
information which is typically discarded in most experiments thus far that
analyze amplitude 2-Dspectra.Developing the experimental and theoretical

Fig. 5 | Pump-2DTS probe spectroscopy of a
hypothetical non-equilibrium phase transition.
Evolution of the nonlinear optical response is shown
as a function of pump-2DTS probe delay tp−p.
Before arrival of the pump pulse (tp−p < 0), the
system is unordered at thermal equilibrium and no
rephasing nonlinearity is observed at the salient
collective mode frequency ω0. Upon arrival of the
pump pulse Epump (tp−p = 0), a non-equilibrium
phase transition is initiated. At short timescales
(tp−p > 0) the non-equilibrium phase is disordered,
reflected by an elongated peak in the rephasing 2-D
spectrum.At long timescales (tp−p≫ 0), the disorder
resolves and the rephasing 2-D spectrum becomes
correspondingly symmetric.

https://doi.org/10.1038/s41535-025-00741-y Perspective

npj Quantum Materials |           (2025) 10:18 6

www.nature.com/npjquantmats


framework for analyzing complex 2-D spectra should connect nonlinear
observables with their more familiar linear counterparts (optical con-
ductivity, refractive index, etc.), andmay even provide insight into the phase
of an underlying many-body wavefunction in materials with topological
order96.

(2) Extending scanning probes97 to perform 2DTS with nanometer
resolution and below is another frontier that combines the advantages of
multidimensional spectroscopy with imaging capability98. Directly corre-
lating the spectral disorder measured by 2DTS with underlying spatial
disorder will strengthen the crucial connection between material inhomo-
geneities and the resultant optoelectronic properties99.

(3) Finally, 2DTSmay also be implementedwith ultrafast circuitry100,101

to reach frequencies below what is possible with free-space optical
methods102. Such on-chip methods also circumvent the restrictive diffrac-
tion limit of terahertz light, and integrate naturally with studies of van der
Waals materials and their devices103,104.
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