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Two-dimensional terahertz spectroscopy (2DTS), a terahertz analog of nuclear magnetic resonance, is a new
technique poised to address many open questions in complex condensed matter systems. The conventional
theoretical framework used ubiquitously for interpreting multidimensional spectra of discrete quantum level
systems is, however, insufficient for the continua of collective excitations in strongly correlated materials. Here,
we develop a theory for 2DTS of a model collective excitation, the Josephson plasma resonance in layered
superconductors. Starting from a mean-field approach at temperatures well below the superconducting phase
transition, we obtain expressions for the multidimensional nonlinear responses that are amenable to intuition
derived from the conventional single-mode scenario. We then consider temperatures near the superconducting
critical temperature Tc, where dynamics beyond mean-field become important and conventional intuition fails.
As fluctuations proliferate near Tc, the dominant contribution to nonlinear response comes from an optical
parametric drive of counterpropagating Josephson plasmons, which gives rise to 2D spectra that are qualitatively
different from the mean-field predictions. As such, and in contrast to one-dimensional spectroscopy techniques,
such as third harmonic generation, 2DTS can be used to directly probe thermally excited finite-momentum
plasmons and their interactions. Our theory can readily be tested in cuprates, and we discuss implications beyond
the present context of Josephson plasmons.
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I. INTRODUCTION

Since its inception over half a century ago, nuclear mag-
netic resonance (NMR) [1,2] has not only become a standard
tool in the fundamental sciences for resolving structure and
interactions in both molecular [3,4] and solid-state systems
[5] but has also become indispensable to modern technolo-
gies as diverse as magnetic resonance imaging [6] and plant
analysis [7]. In recent years, optical analogs of nuclear mag-
netic resonance that interrogate the electronic constituents
of matter, termed multidimensional coherent spectroscopies
[8–10], have come to the fore. With unique capabilities to,
for example, identify coupling between different resonances,
disentangle homogeneous and inhomogeneous broadening
mechanisms [11], and resolve energy transfer pathways, these
techniques have revolutionized our understanding of com-
plex atomic [12], chemical [13], and biological [14] systems,
with growing applications for condensed matter systems [15].
However, the potential of these techniques extends far beyond
these cases for which they were originally envisioned.

Indeed, the characteristics of systems in which these mul-
tidimensional spectroscopies excel, disordered systems with

*These authors contributed equally to this work.

numerous interacting degrees of freedom, are shared by
strongly correlated “quantum materials” [16]. Loosely de-
fined, quantum materials comprise systems for which even
a qualitative understanding of their properties requires a
quantum mechanical treatment. Discerning their complex na-
ture and harvesting their unique properties holds tremendous
promise for future technologies [17]. Many open questions
remain in regards to these materials, both to the physical
phenomena underlying their properties and to practical appli-
cations, including rational design and device implementation.
Some of these questions, while impervious to conventional
probes, could be addressed by multidimensional techniques
[18,19]. Yet the typical low energy scales of collective ex-
citations in such systems have hampered previous efforts.
These energy scales are often in the terahertz optical domain
[20], and the traditional challenge of generating strong, co-
herent radiation at these frequencies is well-known as the
“terahertz gap” [21]. Fortunately, this terahertz gap is now
closing and recent developments in intense low-frequency
light sources [20,22] have enabled so-called two-dimensional
terahertz spectroscopies (2DTS) [23,24] that probe quantum
materials on their fundamental energy scales.

In recent years, an increasing number of groups have ap-
plied 2DTS to a wide range of condensed matter systems
[25,26], ranging from superconductors [27–30] to ferroics
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[26,31–33], and even topological materials [34–37] and spin
liquids [38]. However, the interpretation of their 2DTS spec-
tra often relies on intuition derived from localized, discrete,
single-particle excitations in atoms, molecules, and other
quantum-confined systems [39]. This is fundamentally differ-
ent from delocalized, collective excitations, characterized by
a continuous dispersion. Upon recognizing this point, many
questions arise concerning their optical nonlinearities. How
do we transition from the nonlinear optical response of dis-
crete quantum states to an energy band continuum? What
are the signatures of parametric creation and annihilation
processes [40,41], and the correlations that result? What is
the effect of an interface that spectrally shapes the optical
response? These and other salient questions have yet to be
addressed in a unified manner, which calls for a reformulation
of the ubiquitious theoretical framework used to interpret
conventional multidimensional spectra [9,13,42]. Here, we
address these questions theoretically using the well-known
Josephson plasma resonance in cuprate superconductors [43]
as a model collective excitation that exhibits strong sine-
Gordon nonlinearities. This choice is motivated by recent
experimental reports applying 2DTS to the layered cuprate
superconductor La2−xSrxCuO4 [30,44], as well as the fun-
damental and technological importance of high-Tc cuprates.
We remark that while our theory strictly applies to layered
superconductors with a unit cell containing a single layer,
it can be straightforwardly generalized to the bilayer case,
such as YBCO, by incorporating the more complex bilayer
plasmon dispersion [45]. It is also worth noting that, in prin-
ciple, when probing layered superconductors in the nonlinear
regime, third-order effects in plasma wave propagation—such
as optical bistability, self-focusing, and plasma resonance
shift—must be considered [46]. However, in the perturbative
regime, where 2DTS operates, these effects can be safely
disregarded. While Josephson plasmons represent a specific
system, their electrodynamics is quite generic [47], allowing
us to infer a broader insight into 2D spectroscopy of collective
excitations (expanded upon in Appendix A).

This paper presents three main results. The first is a
derivation of the third-order optical response of Josephson
plasmons within mean-field theory [see Sec. II and Eq. (30)],
applicable at low temperatures T � Tc deep in the super-
conducting phase. This response exhibits both analogies and
important differences to the optical properties of quantum
level systems—one such difference is the presence of air-
superconductor interface which we carefully take into account
via the Fresnel formalism. We find that the Josephson plasmon
optical nonlinearity Eq. (30) descends from the linear optical
response, a feature that we argue is generic to mean-field
approaches (see also Appendix A).

Our second result is detailed in Sec. III, where we introduce
the technique of 2DTS and present expressions for the mea-
sured multidimensional nonlinear responses [Eqs. (33) and
(34)]. We discuss additional important considerations that,
while not relevant for quantum level systems, need to be taken
into account when analyzing and designing 2DTS measure-
ments of complex solids. Simulations of 2D THz spectra are
then presented and resultant two-dimensional lineshapes are
carefully analyzed. These lineshapes are found to remark-
ably preserve information about line-broadening mechanisms

naively expected from a single-mode picture. We remark that
revealing these mechanisms is among the most useful and
unique capabilities of 2DTS.

Finally, in Sec. IV, we go beyond mean-field theory and
consider the scenario of optical nonlinearities near a phase
transition T � Tc. In this regime fluctuations proliferate and
therefore can no longer be neglected—their correction within
the Gaussian approximation to the nonlinear susceptibility
is encoded in Eq. (66). The key nonlinear process that one
needs to take into account as T increases is an optical
parametric drive of counterpropagating Josephson plasmons
[41,48]—this process results in characteristic 2D maps qual-
itatively different from the mean-field ones, thereby allowing
us to isolate the non-mean-field nonlinearities. The result-
ing 2DTS signatures, absent in the linear optical response,
defy intuition derived from conventional spectroscopy of dis-
persionless quantum level systems. We argue that 2DTS,
in contrast to one-dimensional nonlinear spectroscopy tech-
niques such as third harmonic generation, allows us to probe
finite-momentum thermal fluctuations and their interactions.
Our theoretical predictions can be readily validated experi-
mentally in cuprates [44]. Implications beyond the context of
Josephson plasmonics are then discussed.

II. NONLINEAR MEAN-FIELD RESPONSE OF LAYERED
SUPERCONDUCTORS

One of the key aspects of layered cuprate superconductors
is the strong anisotropy which renders the c-axis Josephson
plasma modes to be primary low-energy collective excitations
in the system [49–51], with frequencies typically in the tera-
hertz range. Motivated by recent experimental developments
in the field of 2DTS [30,44], which allows one to study
nonlinearities of the Josephson plasmons in cuprates, here we
develop the theory of nonlinear electrodynamics of layered
superconductors, which extends the framework of Ref. [52] to
account for the air-superconductor interface (see Fig. 1).

Specifically, analysis in this section is based on mean-field
theory, valid for T � Tc. The central result here is Eq. (30),
which relates the third-order susceptibility χ (3)(ω1, ω2, ω2) to
the linear optical response of the system. While the relation
(30) was derived for a specific model, it is argued to be generic
to nonlinear many-body systems that can be describable via
mean-field equations of motion (see Appendix A).

In the following sections we will analyze 2DTS in detail, as
it directly probes χ (3). We will also go beyond the mean-field
analysis and consider the plasma squeezing mode, expected
to play a prominent role near the transition temperature.
Throughout the paper, we discuss the additional information
2DTS measurements bring compared to, for instance, linear
optical spectroscopy and nonlinear third harmonic generation.

A. Equations of motion

To describe the nonlinear electromagnetic response of
layered superconductors we employ the two-fluid model
developed in Ref. [52]. The layered superconductivity is
described using the Lawrence-Doniach model [53], which
neglects the dynamics of the order parameter amplitude �

because it assumes that ω � �, where ω is the typical probe
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FIG. 1. Schematic of the setup. (a) Terahertz light E in is sent
onto the layered superconductor—in 2D spectroscopy experiments
specifically, one uses two pulses EA and EB separated from each other
by time τ (b). The resulting reflected radiation E r is then measured
at time t after the arrival of the second pulse. (c) Typical 2D map. Up
to third-order nonlinearities, it exhibits four distinctive peaks, each
of which contains important information about Josephson plasma
interactions.

frequency. In other words, the superconducting response is
fully encoded in the dynamics of the order parameter phase
ϕn(r, t ), where n is the layer index and r is the in-plane co-
ordinate. The normal fluid is described via phenomenological
Ohm’s law. As such, within this two-fluid model, the z-axis
current density between layers n and n + 1 is given by

Jz;n,n+1 = J0 sin ϕn,n+1 + σ0Ez;n,n+1, (1)

where J0 is the Josephson critical current and

ϕn,n+1 = ϕn − ϕn+1 − 2π

	0

∫ (n+1)s

ns
dz Az (2)

is the gauge-invariant phase difference between layers n and
n + 1. Here s is the distance between adjacent layers, σ0 is the
z-axis normal conductivity (for an additional discussion about
σ0, see Ref. [52]), and 	0 = 2πc/(2e) (throughout the paper,
we set h̄ = kB = 1). We also defined

Ez;n,n+1 = 1

s

∫ (n+1)s

ns
dz Ez. (3)

The two constituent fluids are coupled to each other via
Maxwell’s equations, which ensure that the Coulomb screen-
ing effects are taken into account. When working with the
electromagnetic field, we employ the gauge for which the
scalar potential is zero, i.e., E(r, z, t ) = −∂t A(r, z, t )/c and
B(r, z, t ) = ∇ × A(r, z, t ), with c being the speed of light and
A being the vector potential. Inside the sample, we have:

ε∞∇ · E(r, z, t ) = 4πρ(r, z, t ), (4)

∇ × B(r, z, t ) = ε∞
c

∂t E(r, z, t ) + 4π

c
J(r, z, t ), (5)

where ρ and J are the three-dimensional charge and current
densities, respectively, related to each other via the continuity
relation; ε∞ is the high-frequency c-axis dielectric constant.
For the in-plane current densities, we write the London

relation

Jn(r) = −J0κ
2s

[
∇ϕn(r) + 2π

	0
An(r)

]
, (6)

where κ � 1 is the anisotropy parameter. We also write the
Josephson relation

∂tϕn,n+1 = 2esEz;n,n+1, (7)

expected to hold at low temperatures when one can neglect the
presence of pancake vortices.

Combining all of the above equations and in the limit
(ωλab/c)2 � 1, where λab is the London penetration depth for
the in-plane currents, one obtains [52,54] (ψn ≡ ϕn,n+1):(

∂2
t + γ ∂t

)
ψn − ∇2Lnmψm + �0 sin ψn = 0, (8)

with γ = 4πσ0/ε∞, �0 = c2
0/λ

2
J , and

Lnm = c2
0

N

∑
k

eik(n−m)

2(1 − cos k) + s2/λ2
ab

. (9)

Here N is the total number of layers (k = 2πn/N , with n
being integer), λJ = κs, and c0 = cs/(λab

√
ε∞) is the Swihart

velocity.

B. Boundary conditions

In optical experiments, both linear and nonlinear, one sends
light onto the superconducting sample and then measures, for
instance, the reflected light (see Fig. 1). In practice, to evaluate
the latter, one can separately solve Maxwell’s equations in
the air and the material, Eq. (8), and then match the solutions
using the Fresnel boundary conditions. We assume (i) normal
incidence and (ii) the incident light is homogeneous along the
yz plane with the electric field being parallel to the z axis (see
Fig. 1). As such, the boundary conditions at x = 0 are given
by

E in
z (y, t ) + E r

z (y, t ) = E t
z (y, t ), (10)

Bin
y (y, t ) + Br

y(y, t ) = Bt
y(y, t ). (11)

Here, the superscripts r and t refer to the incoming reflected
and transmitted light, respectively. For future reference, we
note that, due to the homogeneity of the incoming light pulses
along the z axis, the gauge-invariant phase difference ψn = ψ

does not depend on the layer index n.
Inside the sample, the Josephson relation (7) is understood

as E t
z = ∂tψ/(2es). For the magnetic field, one generically has

[52]

ẑ × Bn,n+1 = 4πλ2
ab

cs
(Jn+1 − Jn) − 	0

2πs
∇ϕn,n+1. (12)

However, the z-axis homogeneity of the incoming radiation
implies that Jn+1 = Jn so that

Bt = 	0

2πs
ẑ × ∇ψ. (13)

For the normal incidence we consider here, the boundary
conditions (10) and (11) further simplify to

1

4es
∂tψ − 	0

4πs
∂xψ = E in

z (x = 0, t ). (14)
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This result follows from relations (7) and (13), and the fact
that in the air we have

Bin
y (r, t ) = −E in

z (r, t ), Br
y(r, t ) = E r

z (r, t ). (15)

Equation (14) is particularly useful as it directly relates the in-
coming light to how it affects the dynamics inside the sample.
The reflected light, which encodes the primary observable of
interest below, is then given by

E r (x = 0, t ) = 1

4es
∂tψ + 	0

4πs
∂xψ. (16)

C. Nonlinear third-order susceptibility

We now assume that the incident light is weak enough so
that we may carry out a perturbative analysis in E in, but strong
enough so that the resulting nonlinearities are measurable.
Hence, we write

ψ (x, t ) = ψ (1)(x, t ) + ψ (3)(x, t ) + · · · . (17)

We limit ourselves to the third-order response ψ (3)(x, t ), as
the second-order response is zero. From Eq. (8), we obtain
the following coupled set of equations:(

∂2
t + γ ∂t − L∂2

x + �0
)
ψ (1) = 0, (18)

(
∂2

t + γ ∂t − L∂2
x + �0

)
ψ (3) = �0

6
(ψ (1) )3, (19)

where L =∑m Lnm = c2/ε∞. As follows from Eq. (14), the
boundary conditions for ψ (1) and ψ (3) now read

∂tψ
(1)(0, t ) − c∂xψ

(1)(0, t ) = 2E in(t ), (20)

∂tψ
(3)(0, t ) − c∂xψ

(3)(0, t ) = 0, (21)

where we have defined for notational convenience E in(t ) =
2esE in(x = 0, t ). The leading term ψ (1)(x, t ) describes the
linear response which then acts as a drive for ψ (3)(x, t ).

Since ψ (1)(x, t ) satisfies the linear wave Eq. (18), one can
generically write

ψ (1)(x, t ) =
∫

dω

2π
ψ̃ (1)(ω)eikx (ω)x−iωt , (22)

where

Lk2
x (ω) = ω2 + iγω − �0. (23)

The root kx(ω) in Eq. (23) is chosen such that it corresponds to
waves propagating away from the surface with Im kx(ω) > 0.
The amplitudes ψ̃ (1)(ω) are found using the boundary condi-
tion (20) at x = 0:

ψ̃ (1)(ω) = 2iE in(ω)

ω + ckx(ω)
= i

ω
t (ω)E in(ω). (24)

Here t (ω) = 2/[1 + √
ε(ω)] is nothing but the transmis-

sion coefficient with
√

ε(ω) = ckx(ω)/ω. Indeed, using the
Josephson relation (7), one can recover the usual Fresnel
transmission relation given by

E t (x = 0, ω) = 2

1 + √
ε(ω)

E in(x = 0, ω). (25)

Having determined the leading harmonic ψ (1)(x, t ), we
turn to compute ψ (3)(x, t ). Since Eq. (19) is linear as well,
one can generically write ψ (3)(x, t ) as

ψ (3)(x, t ) =
∫

dω

2π
ψ̃ (3)(ω)eikx (ω)x−iωt + ψdr

3 (x, t ), (26)

where the first term encodes the generic solution of the homo-
geneous part of Eq. (19) and ψ

(3)
dr (x, t ) is given by

ψ
(3)
dr (x, t ) = �0

6

∫
dω

2π

∫
dk

2π

eikx−iωt

−ω2 − iγω + Lk2 + �0

∫
dω1

2π

dω2

2π

dω3

2π
2πδ(ω1 + ω2 + ω3 − ω)

× 2πδ(kx(ω1) + kx(ω2) + kx(ω3) − k)ψ̃ (1)(ω1)ψ̃ (1)(ω2)ψ̃ (1)(ω3). (27)

The amplitudes ψ̃ (3)(ω) are obtained from the boundary condition (21):

ψ̃ (3)(ω) = −ωψ
(3)
dr (x = 0, ω) + ic∂xψ

(3)
dr (x = 0, ω)

ω + ckx(ω)
= −�0

6

∫
dk

2π

1

−ω2 − iγω + Lk2 + �0

ω + ck

ω + ckx(ω)

×
∫

dω1

2π

dω2

2π

dω3

2π
2πδ(ω1 + ω2 + ω3 − ω)2πδ(kx(ω1) + kx(ω2) + kx(ω3) − k)ψ̃ (1)(ω1)ψ̃ (1)(ω2)ψ̃ (1)(ω3). (28)

For ease of notations, we define ω̄ = ω1 + ω2 + ω3 and kx(ω1, ω2, ω3) = kx(ω1) + kx(ω2) + kx(ω3). For the reflected light at
x = 0, we then get

E (3)
r (t ) = ∂tψ

(3)(0, t ) + c∂xψ
(3)(0, t )

2
=
∫

dω1

2π

∫
dω2

2π

∫
dω3

2π
e−iω̄tχ (3)(ω1, ω2, ω3)E in(ω1)E in(ω2)E in(ω3). (29)

Notably, we find that the third-order susceptibility

χ (3)(ω1, ω2, ω3) = �0ε∞
12

1

ckx(ω1, ω2, ω3)/ω̄ + √
ε(ω̄)

t (ω̄)

ω̄

t (ω1)

ω1

t (ω2)

ω2

t (ω3)

ω3
(30)
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is expressed solely through the dielectric function ε(ω), which
is fully determined by the linear response function (24).
Such factorization holds only within mean-field approxima-
tion; nevertheless, the form in Eq. (30) seems to be generic
to any classical nonlinear reflectivity problem (see also Ap-
pendix A). We interpret various terms entering in Eq. (30) as
follows: (i) the last three factors of t (ωi ) take into account the
three transmission coefficients for the three incoming electric
fields, (ii) the term in the first row of Eq. (30) encodes the
dynamics of the 3-wave-mixed phase, and (iii) the factor of
t (ω̄) accounts for the transmission of this 3-wave-mixed field
from the inside to the outside of the sample. Various factors
of ω come from the Josephson relations between the phases
and corresponding electric fields. Equipped with Eq. (30), we
move on to analyze 2D THz spectroscopy experiments.

III. 2DTS OF COLLECTIVE MODES

This section is dedicated to developing an intuitive theoret-
ical understanding of 2DTS in the context of collective exci-
tations, in particular Josephson plasmons in layered supercon-
ductors. In Sec. III A, we describe the typical 2DTS protocol,
whereby a sequence of terahertz pulses is sent onto the sample
and a wave-mixing signal emitted either in the reflected or
transmitted directions is measured [Figs. 1(a) and 1(b)]. We
discuss how such a protocol enables one to probe salient fea-
tures of the third-order susceptibility. We also point out addi-
tional 2DTS considerations one must take into account when
studying many-body systems. Subsequently, in Secs. III B
and III C, we clarify the applicability and shortcomings
of the mean-field description developed in the preceding
section when dealing with real condensed matter systems.
Comparisons to the single-mode theory are drawn, which
should guide the use of conventional intuition developed from
atomic and molecular systems to collective modes in solids.

A. Basic considerations of 2DTS in the many-body context

1. 2DTS protocol

We first discuss the 2DTS protocol applied to a layered
superconductor [Fig. 1(a)]. We assume the incident field E in

is polarized along the out-of-plane z direction and propagates
along the in-plane x direction. Resultant reflected and trans-
mitted fields E r and E t are likewise polarized along the z axis.
The incident field consists of two identical excitation pulses,
denoted EA and EB, separated by a time delay τ as illustrated
in Fig. 1(b). More precisely, the total incident electric field
at the sample surface at the measurement time t + τ can be
written as (zero of time is set to be the arrival of the first
A-pulse):

E in(x = 0, t + τ ; τ ) = EA(t + τ ) + EB(t ). (31)

After interaction with both excitation pulses, the system
is left to evolve unperturbed along time t , during which a
nonlinear electric field Enl (either reflected or transmitted)
is measured [Fig. 1(b)]. This nonlinear electric field emis-
sion is also measured as a function of the inter-pulse delay
τ , with sampling density and range parameters chosen ac-
cording to the frequencies and linewidths of interest, and a
two-dimensional array of measured values Enl(t + τ ; τ ) is
obtained. A Fourier transform with respect to both τ and t
defined as

Enl(ωt , ωτ ) =
∫ ∞

0
dt
∫ ∞

0
dτ Enl(t + τ ; τ ) eiωt t+iωτ τ (32)

returns a two-dimensional spectrum Enl(ωτ , ωt ), sometimes
referred to as a “2D map.” Note that the integration in Eq. (32)
starts at t = τ = 0—such definition ensures the causal re-
lation τ > 0 so that the A pulse arrives first. A schematic
(absolute-value) 2D map for a third-order nonlinearity of the
Josephson plasmon is plotted in Fig. 1(c). As implied by
the labels in Fig. 1(c), linear signals proportional to EA and
EB as well as self-nonlinearities proportional to E3

A and E3
B

are typically filtered out in experiments, leaving behind the
mixing terms proportional to E2

AEB and EAE2
B . These terms

are related to the third-order susceptibility as

E (3)
AAB(ωt , ωτ ) = 3 lim

δτ →0
δt →0

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
χ (3)(ω1, ω2, ω3)

EA(ω1)EA(ω2)

i(ωτ − ω1 − ω2) − δτ

EB(ω3)

i(ωt − ω1 − ω2 − ω3) − δt
, (33)

E (3)
ABB(ωt , ωτ ) = 3 lim

δτ →0
δt →0

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
χ (3)(ω1, ω2, ω3)

EA(ω1)

i(ωτ − ω1) − δτ

EB(ω2)EB(ω3)

i(ωt − ω1 − ω2 − ω3) − δt
. (34)

The relations (33) and (34) are generic and represent the start-
ing point of our subsequent analyses. In the remainder of this
section we discuss additional considerations that arise when
transitioning from the conventional single-mode picture to a
many-body system. Here we primarily focus on the mean-field
nonlinearities encoded in Eq. (30) and consider fluctuation
corrections to χ (3) in Sec. IV.

2. Pulse frequency filtering

As follows from Eqs. (33) and (34), the excitation spectra
EA(ω) and EB(ω) act to filter out particular components of
the third-order susceptibility. For conventional multidimen-
sional spectroscopies of single-mode systems, the excitation
pulse spectrum is typically far broader than any characteris-
tic frequencies of the probed optical response. This permits
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approximating each excitation pulse as the idealized δ(t ) func-
tion that directly samples the full nonlinear optical response
function. This condition is therefore referred to as the “impul-
sive limit.”

In 2DTS experiments this condition is less well-defined, as
for many-body systems one typically must take into account
a continuum of collective excitations, each of which can also
have its own lifetime. For the mean-field case considered in
this section, finite pulse effects are of no real utility. However,
the filtering property of such finite pulses may become useful
when physics beyond mean-field become prominent, which
will be discussed in the following section (see Fig. 6).

3. Effects due to the boundary

Another crucial difference between single-mode and
many-body systems is the environment-sample interface
[29,55]. An immediate consequence of this interface is that
only the magnitude and in-plane component (parallel to
the interface) of momentum are conserved in the nonlinear
wave-mixing processes. This consideration, due to symmetry
breaking by the interface, is not important in the colinear ge-
ometry considered here, but is crucial to determining emission
wavevectors in a noncollinear excitation geometry [30]. An
additional consequence of the interface follows from Eq. (30),
with the incoming (and outgoing) electric fields being further
weighted by a transmission coefficient t (ω). As such, t (ω)
acts as an additional “many-body filtering” on top of the
aforementioned pulse frequency filtering.

Let us illustrate this important interplay between the
pulse-excitation and optical properties of the sample us-
ing the mean-field description of layered superconductiv-
ity developed above. For the one-dimensional polaritonic
mode encoded in Eq. (23), the dielectric function is
given by:

ε(ω; T ) = ε∞
(

1 − [ωJP(T )]2

ω(ω + i0+)
− γ (T )

iω

)
, (35)

where ωJP(T ) = √
�0(T ) is the Josephson plasmon reso-

nance frequency and γ (T ) is the intrinsic decay rate, and
both quantities generally depend on temperature T . For future
reference, the reflection coefficient R(ω) and loss function
L(ω) are related to ε(ω) through:

R(ω) =
∣∣∣∣1 − √

ε(ω)

1 + √
ε(ω)

∣∣∣∣
2

, L(ω) = −Im{ε−1(ω)}. (36)

It is worth pointing out that Eq. (35) could be used for fitting
linear spectroscopy measurements to extract ωJP and γ . In
fact, one of the appeals of the Bulayevskii framework we use
here is that the fitting form of Eq. (35) accurately captures
actual experimental data [54,56–58]. When determining the
filtering properties of the mean-field transmission coefficient
t (ω), two considerations are relevant—the density of states
and dispersion of the polaritonic mode (23) and its decay rate
γ . At low temperatures, where the latter can be disregarded
γ � ωJP, t (ω) is sharply peaked at ωJP, which, in particular,
implies that (i) the pulse frequency profile should be carefully
chosen to have an appreciable spectral overlap with t (ω) and
(ii) the relevant probed frequencies are centered at ωJP. At
high temperatures, we instead expect γ � ωJP and, as such,

a featureless t (ω) such that the many-body filtering due to the
interface is no longer that important. We further discuss this
picture in Sec. III C.

4. Typical 2D maps

We turn to briefly describe a typical 2D map of an an-
harmonic (classical or quantum) oscillator [2,9,13,42], which
well captures the low-temperature behavior of Josephson plas-
mon nonlinearities. Throughout the remainder of the paper,
we set ω0

JP = ωJP(T = 0) to be the unit of energy. Since E (t )
is a real variable, one gets E (−ω) = [E (ω)]∗—for this reason,
we will discuss positive frequencies only and use complex
conjugates for negative frequencies.

Equations (33) and (34) give rise to four nonlinearities that
radiate out at the fundamental Josephson plasma frequency
ω0

JP. Each of them corresponds to a unique combination of
electric field interactions and, as such, appears as a dis-
tinct peak in the 2D map [see Fig. 1(c)]. Each peak in
Fig. 1(c) is labeled by its corresponding field interactions,
which determine its position in the frequency space by mul-
tiplying the on-resonance phase factors EA ∝ e−iω0

JP (t+τ ) and
EB ∝ e−iω0

JPt .
We first address the peaks labeled “2-quantum” and

“pump-probe.” One may intuitively understand the origin of
each feature by first examining their interaction with the
first excitation pulse EA, which determines their position
along the vertical frequency axis. From the perspective of
the classical sine-Gordon nonlinearity, the 2-quantum and
pump-probe peaks arise from parametric modulation (scal-
ing with EAEA) and rectification (scaling with EAE∗

A) of the
resonance frequency, respectively. We point out that in the
quantum oscillator picture (with initial state being vacuum),
the 2-quantum peak arises from a coherence between the
ground state and second excited state generated by the two
field interactions EAEA, while the pump-probe peak arises
from populations in either the ground or first excited state
generated by EAE∗

A .
In contrast, the peaks labeled “nonrephasing” and “rephas-

ing” involve only a single interaction with the first excitation
pulse—with EA or E∗

A , respectively. From the classical per-
spective such interaction simply corresponds to displacing
the Josephson plasmon coordinate, while from the quantum
perspective it corresponds to generating a coherence between
the ground state and first excited state. The difference between
the two nonlinearities could be understood in terms of the
relative phase of oscillations induced by the A-pulse to those
of the subsequent emission induced by the B-pulse. In the
nonrephasing case, since the system oscillates with the same
frequency ωJP after interacting with both pulses, this phase
accumulates following each excitation.

For the rephasing nonlinearity, the interaction with the
first pulse gives rise to oscillations during time τ at −ω0

JP.
After two interactions with the second pulse, the state is then
brought into a time-reversed superposition, which oscillates
during time t at ω0

JP, implying instead the cancellation of the
relative phase. This change of the frequency sign also implies
that the initial state is restored whenever τ = t , known as the
celebrated “echo” phenomenon, which we turn to discuss in
the many-body setting.
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FIG. 2. The rephasing nonlinearity. (a) Sketch of the homogeneous (intrinsic) γ and inhomogeneous σJP broadenings. The latter is modeled
as a static Gaussian distribution of the JP resonance, while the plasmon lifetime is kept fixed γ /ω0

JP = 0.05. (b) Pulse in Eq. (37) is chosen to
have ωd/ω

0
JP = 1 and σ/ω0

JP = 0.5. (c), (d) Evolution of the rephasing peak with increasing inhomogeneous disorder σJP for (c) single mode
and (d) continuum of collective modes. In both cases, we observe that the star-shaped peaks turn into almond-shaped ones. (e) Slices across the
diagonal (red) and cross-diagonal (green) lines of the continuum rephasing nonlinearity for σJP/ω

0
JP = 0.1. Simultaneous fit of these two slices

using single-mode functional forms of Ref. [59] enables one to estimate homogeneous and inhomogeneous broadenings: γ fit/ω0
JP = 0.05, and

σ fit
JP /ω0

JP = 0.098. (f) Comparison of the fitted σJP with respect to the input value for the simulation. Such fitting is found to be reliable so long
as σJP/ω

0
JP � 0.1 (shaded area).

B. Rephasing nonlinearity

The utility of rephasing “echoes” comes from the abil-
ity to disentangle energy disorder, as commonly performed
with spin echoes in NMR and photon echoes in optical four-
wave mixing [59–61] of atomic and molecular systems. For
a single-mode representation of the Josephson plasma reso-
nance, such static energy disorder may be understood as ω0

JP
is spanning a range of resonance frequencies [see Fig. 2(a)],
introducing an inhomogeneous linewidth σJP in addition to the
linewidth γ from intrinsic level broadening.

For collective excitations, the duration of terahertz optical
pulses may become considerable with respect to the timescale
of dynamics involved. For concreteness, from now on we
model excitation pulses via

EA,B(t ) = �(t )EA,Be−σ t cos ωdt, (37)

where ωd is the pulse carrier frequency and σ defines the spec-
tral bandwidth of the excitation pulses [Fig. 2(b)]. The choice
of the form of Eq. (37) is natural for two reasons: (i) in the
frequency domain, these pulses become simple Lorentzians,
which facilitates analytical and numerical analyses, and (ii)
essentially any realistic pulse shape can be represented as a
sum of Lorentzians.

The single-mode simulations presented in Fig. 2(c) repro-
duces the conventional wisdom: As inhomogenous broaden-
ing σJP is tuned, the rephasing peak evolves from having
a symmetric “star” shape when the intrinsic broadening
dominates γ � σJP to being “almond”-shaped when σJP be-
comes appreciable. The values of γ and σJP can then be
directly obtained by simultaneously fitting the linecuts along
the “diagonal” (ωτ = ωt ) and perpendicular “cross diagonal”
directions of the (1,−1) peak, using the fitting forms of
Refs. [59,61].

This unique capability of the rephasing nonlinearity is
clearly relevant to studying a wide range of quantum materials
for which disorder plays an overt role in their properties.
We remark that a reasonable starting point to understand
how disorder affects Josephson plasmons is to consider static
spatial inhomogeneities in the superfluid density—this pic-
ture provided a clear interpretation to recent measurements
of the rephasing nonlinearity in La2−xSrxCuO4 (LSCO) [30].
However, how such disorder manifests in optical nonlineari-
ties is a challenging many-body problem that might require
developments based on the Keldysh and disorder-averaging
techniques—a task left for future work. Here we instead
consider a static distribution of resonant frequencies ω0

JP in
anticipation that, as it is the case for atomic and molecular
systems, such modeling will prove useful to interpret future
2DTS experiments. Nevertheless, we still get an interesting
nontrivial interplay between σJP, γ , and the polariton dis-
persion (23), which makes our analysis of the many-body
problem fairly distinct from the single-mode picture.

Quite strikingly, we find that, in the full continuum-mode
simulations presented in Fig. 2(d), the many-body rephasing
peak essentially follows the single-mode phenomenology in
Fig. 2(c). To quantitatively examine the agreement between
these two scenarios, we use the single-mode fitting forms
[59,61] to extract γ and σJP from the continuum 2D maps.
Figure 2(e) shows the simulated lineshapes [taken along the
corresponding arrows in Fig. 2(d)], and we find remarkable
accuracy of such fitting. This agreement of the fitted disorder
linewidth σ fit

JP is further examined quantitatively in Fig. 2(f),
which returns the true linewidth to great accuracy for values
of the disorder up to σJP/ω

0
JP ≈ 0.1, above which the disorder

linewidth approaches the excitation bandwidth and fitted val-
ues begin to underestimate the disorder linewidth. In addition,
we mention that our simplified modeling here well-captures
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FIG. 3. Evolution of 2D maps with temperature. (a) As T in-
creases, the JP resonance ωJP(T ) softens and the decay γ (T )
grows, as can be deciphered from the linear reflectivity R(ω) and
loss function L(ω), Eq. (36). (b) This behavior manifests in the
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both quantitative and qualitative aspects, including the peak
shape as well as the extracted values of linewidths γ and σJP,
of the reported rephasing nonlinearity of LSCO [30].

C. Approaching the phase transition

An interesting question we turn to address is the evolution
of 2D maps with increasing temperature toward Tc. We will
argue that the many-body filtering mentioned in Sec. III A
will explicitly manifest, which is particularly appealing for the
experimental verification of our predictions.

As T is increased from T = 0 up to Tc, the initially
sharp Josephson plasma resonance with γ � ω0

JP not only
softens but also significantly broadens so that γ � ωJP for
T ≈ Tc—this behavior is shown in Fig. 3(a), where the
zero-temperature reflectivity plasma edge eventually becomes
featureless, in qualitative agreement with the reflectivity ex-
periments in LSCO [57,58].

The corresponding 2D maps, where the pulse spectra are
chosen such as to have a substantial spectral overlap with
the loss function, are shown in Fig. 3(b). Along the vertical
frequency axis ωτ , each peak is pinned by the peak frequency
of the excitation spectrum and remains at the same position
regardless of temperature. Along the horizontal emission fre-
quency axis ωt , however, the spectral weight of the peaks

directly follow the linear response loss function due to the
filtering property of the environment-sample interface. Let us
remark that in the single-mode picture, where one is in the
impulsive limit and uses identical excitation pulse spectra, one
gets peaks arranged in the strict pattern shown in Fig. 1(c) so
that these peaks would soften toward the origin ωτ = ωt = 0
with decreasing plasma frequency.

We finally mention two recent 2DTS experiments on NbN
[62] and LSCO [44]. While NbN is not a layered super-
conductor, its nonlinearities are reasonably captured within
mean-field theory, and, as such, a subset of the observa-
tions reported in Ref. [62] are found to be consistent with
Fig. 3(b). Our mean-field theory is expected to capture the
low-temperature 2D maps of LSCO [44], but might fail to
explain the observations near T ≈ Tc. Close to Tc, super-
conducting fluctuations become prominent, implying that the
mean-field description can break down—we consider the role
of plasma fluctuations in the following section and show that
their correction to the third-order susceptibility gives rise to
distinct 2DTS experimental signatures.

IV. DYNAMICAL ELECTROMAGNETIC BACKGROUND

The Josephson plasma resonance softening as T ap-
proaches Tc is accompanied by proliferation of thermally
excited plasmons, indicating that the above simplified mod-
eling becomes insufficient. This suggests that near Tc, the
2D maps can be determined by the nonlinear process where
the optical pulses give rise to a parametric drive of counter-
propagating plasmon pairs of equal but opposite momenta—a
scenario we turn to investigate in this section. We remark that
this process is at the heart of the plasmon squeezing proposal
[41] for light-induced superconductivity [63].

To account for the effects of dynamical electromagnetic
background, we consider the Johnson-Nyquist normal-fluid
noise [41], which modifies Eq. (1) to

Jz;n,n+1 = J0 sin ϕn,n+1 + σ0Ez;n,n+1 + ξn. (38)

The fluctuation-dissipation theorem further imposes [64]

〈ξn(r, t )ξm(r′, t ′)〉 = 2σ0T

s
δnmδ(r − r′)δ(t − t ′). (39)

Note that fluctuations are treated classically, a justification
that holds near T ≈ Tc, where the plasma frequency ωJP(T )
softens to values below T . For reference, the T = 0 plasma
frequency in LSCO is ωJP � 2 THz � 100 K, while Tc �
40 K. This suggests that the condition ωJP(T ) � T is fulfilled
in layered superconductors within an appreciable range near
Tc (see also Appendix B). A detailed analysis of quantum
effects in plasma nonlinearities beyond mean-field is left for
future work. Equation (8) then acquires the Langevin form:(

∂2
t + γ ∂t

)
ψn − ∇2Lnmψm + �0 sin ψn = ξψ

n , (40)

with 〈
ξψ

n (r, t )ξψ
m (r′, t ′)

〉 = 2γ T̃ δnmδ(r − r′)δ(t − t ′), (41)

where T̃ = 16πe2sT/ε∞. We note that Eq. (40) is derived
under the assumption that the order parameter dynamics fol-
lows Eq. (7), which might no longer hold near Tc due to,
for instance, proliferation of pancakelike vortices. However,
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even if one considers overdamped order parameter dynamics
(model A in the classification of Ref. [65]), the Josephson
plasma modes can remain long-lived excitations even above Tc

[41]. Additionally, the experimental analysis of the rephasing
peak in optimally doped LSCO [30] showed that the intrinsic
broadening γ dominates over disorder effects for T � Tc (in
Ref. [30], T � 0.7Tc). This suggests that pancake vortices are
either nonessential or their effects can be well captured via
a simple renormalization of the decay rate γ (T ), at least for
temperatures not too close to Tc. In the immediate vicinity of
T ≈ Tc, we expect that the Bulayevskii framework in Sec. II
might become insufficient and should be revisited (we com-
ment on this below). We, thus, shall proceed with analyzing
Eq. (40), as we expect that it should adequately describe the
correct physics as T approaches Tc.

A. Gaussian fluctuations and equations of motion

In the remainder of the paper, we treat the fluctua-
tions within the Gaussian approximation and our derivations
closely follow Refs. [41,66]. In this section, we will also
assume that external perturbations are homogeneous in
space—this will dramatically simplify our analysis, facilitat-
ing the understanding of the nonlinear physics due to the
fluctuating electromagnetic background [67]. As a first step,
we reduce the second-order differential Eq. (40) to cou-
pled first-order ones by introducing the real-field πn(r, t ) =
∂tψn(r, t ):

∂tψn = πn, (42)

∂tπn + γπn − ∇2Lnmψm + �0 sin ψn = ξψ
n . (43)

The advantage of this simple reduction is that it allows
us to promote the stochastic Langevin-like equations to the
Fokker-Planck equation on the cumulative distribution func-
tion P[ψn(r), πn(r); t]. Within the Gaussian approximation,
this time-dependent distribution function P[ψn(r), πn(r); t]
remains Gaussian even after photoexcitation. This, in particu-
lar, implies that the system’s dynamics is fully characterized
by the one- and two-point instantaneous correlation functions.

The two one-point correlators, which are position inde-
pendent due to translational invariance ψ (t ) = 〈ψn(r, t )〉 and
π (t ) = 〈πn(r, t )〉, satisfy

∂tψ = π, ∂tπ + γπ + �(t ) sin ψ = jz(t ), (44)

where jz(t ) encodes an external driving term assumed to be
in the form of a charge current. The time-dependent coupling
�(t ) is given by

�(t ) ≡ �0(t )〈cos δψn(r, t )〉

= �0(t ) exp

⎡
⎣− 1

2AN

∑
q,qz

Dψψ
q,qz

(t )

⎤
⎦. (45)

The bare coupling �0(t ) might be directly affected by the
laser pulses, as we elaborate upon below. Here we have in-
troduced the fluctuating field δψn(r, t ) = ψn(r, t ) − ψ (t ) and
its instantaneous two-point correlator Dψψ

q,qz :

Dψψ
q,qz

(t ) = 〈δψ (−q,−qz; t )δψ (q, qz; t )〉. (46)

Interestingly, the time-dependent fluctuating background dy-
namically renormalizes the interaction strength �0 → �(t )
so that the effective model reminds the parametrically driven
sine-Gordon.

Equations of motion for the two-point correlation func-
tions, introduced as in Eq. (46), read

∂tDψψ
q,qz

= 2Dψπ
q,qz

, (47)

∂tDψπ
q,qz

= Dππ
q,qz

− γDψπ
q,qz

− [(q2
x + q2

y

)
L(qz ) + � cos ψ

]
Dψψ

q,qz
, (48)

∂tDππ
q,qz

= 2γ T̃ − 2γDππ
q,qz

− 2
[(

q2
x + q2

y

)
L(qz ) + � cos ψ

]
Dψπ

q,qz
. (49)

Here we have utilized the fact that all these correlation func-
tions are real and Dπψ

q,qz = Dψπ
q,qz . We remark that pairs of

counterpropagating plasmons explore the very anisotropic
dispersion encoded in L(qz ), cf. Eqs. (47)–(49).

B. Plasmon squeezing mode and response functions

We begin our analysis of the derived equations of mo-
tion (44), (47)–(49) by examining the equilibrium correlation
functions. In the absence of external time-dependent perturba-
tions, we get ψ = π = Dψπ

q,qz = 0 and

D̄ππ
q,qz

= T̃ , D̄ψψ
q,qz

= T̃(
q2

x + q2
y

)
L(qz ) + �eq

, (50)

where the equilibrium coupling �eq is to be determined self-
consistently:

�eq = �0 exp

⎡
⎣− 1

2AN

∑
q,qz

D̄ψψ
q,qz

⎤
⎦. (51)

We find that the Josephson plasma resonance ω2
JP(T ) =

�eq(T ) softens with increasing T , even if we assume that the
bare model parameters are temperature independent. In fact,
within the Gaussian approximation we employ here, the tran-
sition temperature at which the Josephson coupling is fully
suppressed by fluctuations is found to be—see Appendix B:

T̃c = 8πc2s2/λ2
ab

ε∞
(
2 + s2/λ2

ab

) . (52)

We remark, however, that this result does not take into account
the fact that the Bulayevskii framework in Sec. II can become
insufficient near the phase transition. In what follows, T̃c is
used as the reference temperature. As follows from Eq. (50),
which reflects the equipartition theorem, the softening can
also be understood as proliferation of plasma fluctuations. For
low temperatures, these plasma modes are barely populated
and, thus, cannot manifest in response functions; as T̃ in-
creases toward T̃c, their role can no longer be ignored.

We now turn to analyze collective excitations on top of the
equilibrium state. Explicit linearization of the equations of
motion (44), (47)–(49) shows that the dynamics of one-
point correlators ψ and π is decoupled from that of the
D-correlators. This can be understood as the fields ψ and π

are IR-active since they directly couple to the external electric

094514-9



ALEX GÓMEZ SALVADOR et al. PHYSICAL REVIEW B 110, 094514 (2024)

FIG. 4. Cartoon of the relevant (a) IR- (one-photon) and
(b) Raman-like (two-photon) processes that determine optical prop-
erties of the sample. The Raman drive at �d excites a pair of
counterpropagating plasmons, each of which has frequency �d/2.
(c) One-photon χψ (ω) and two-photon χ�(ω) response functions.
Most notably, we find that χ�(ω), Eq. (60), is peaked in frequency
at twice the Josephson plasma resonance 2ωJP. This is because the
Raman process in (b) is amplified for �d = 2ωJP, i.e., near the
bottom of the plasmon band. Additionally, Im[χ�(ω)] is larger than
Im[χ 0

�(ω)] for ω � 2ωJP—an effect attributed to plasmon-plasmon
interactions. All the responses are normalized by the maximum of
Im[χψ (ω)].

field drive and change sign under inversion; in contrast, the D-
correlators are Raman-active, remain intact under inversion,
and, thus, cannot be excited via a single photon.

Not surprisingly, the linearized dynamics of ψ and π

encodes nothing but the Josephson plasmons. To see this
explicitly, one can compute the leading order response
ψ (1)(ω) = χψ (ω) jz(ω) to the jz(t )-drive, cf. Eq. (44):

χψ (ω) = 1

−ω2 − iγω + �eq
. (53)

As in the preceding sections, this response function is sharply
peaked in frequency at the Josepshon plasma resonance
ωJP(T )—see also Fig. 4.

We turn to discuss the linearized dynamics of the two-point
correlation functions. For reasons that will become more clear
below and keeping in mind that an intense laser pulse might
partially evaporate the superconducting condensate, we con-
sider the following type of perturbations:

�0 → �0 + δ�0(t ). (54)

While such a perturbation of the bare coupling constant leaves
the one-point correlators intact ψ = π = 0, it can result in
a nontrivial dynamics of the two-point correlators Dαβ (t ) =
D̄αβ + δDαβ (t ) and, as such, of the renormalized coupling

�(t ) = �eq + δ�(t ). To the leading order in δ�0(t ), we get

δ�(t ) = �eq

⎡
⎣δ�0(t )

�0
− 1

2AN

∑
q,qz

δDψψ
q,qz

(t )

⎤
⎦. (55)

This expression written in the frequency domain

δ�(ω) = [1 + χ�(ω)]δ�0(ω)�eq/�0 (56)

allows us to introduce the response function χ�(ω), the central
object of the upcoming discussion. Linearization of Eqs. (47)–
(49) gives

−iωδDψψ
q,qz

= 2δDψπ
q,qz

, (57)

−i(ω + 2iγ )δDππ
q,qz

= −2[q2L(qz ) + �eq ]δDψπ
q,qz

, (58)

and

−i(ω + iγ )δDψπ
q,qz

= δDππ
q,qz

− [q2L(qz ) + �eq ]δDψψ
q,qz

− δ�(ω)D̄ψψ
q,qz

. (59)

Solving these coupled Eqs. (55)–(59), we obtain (see Ap-
pendix C for details)

χ�(ω) = χ0
�(ω)

1 − χ0
�(ω)

, (60)

where

χ0
�(ω) = − 2T̃ �eq

T̃cω(ω + iγ )
log

(
1 − i

γω

2�eq
− ω2

4�eq

)
. (61)

While during Raman perturbations, such as in Eq. (54), the
average electromagnetic field remains zero (ψ = π = 0), the
dynamics of the average electromagnetic energy density, en-
coded in the D-correlators, can be nontrivial. This is the
reason the response functions χ0

�(ω) and χ�(ω) are associated
with the Josephson plasmon squeezing (for additional discus-
sion, see Ref. [41]).

The response function χ0
�(ω) has a rather involved and

interesting structure shown in Fig. 4(a). Most remarkably,
we find that Im[χ0

�(ω)] is peaked in frequency at around
2ωJP. To understand this feature, we note that a Raman drive
at frequency �d , as in Eq. (54), necessarily excites a pair
of counterpropagating Josephson plasmons, each with a fre-
quency of �d/2 [see Fig. 4(b)]. Such a Raman process is
enhanced when �d/2 matches the bottom of the plasmon band
�d = 2ωJP, i.e., where the density of states exhibits a van
Hove singularity (see Fig. 4).

Other interesting features of Im[χ0
�(ω)] include a hump

at small frequencies ω � ωJP and a slow ∼1/ω2 decay at
large frequencies ω � 2ωJP. Both these effects originate from
the interplay between the plasmon density of states, which
grows with ω for ω � ωJP, and ω-dependent matrix elements,
associated with the plasmon propagation [see also Eq. (7)],
that decrease with ω, as can be inferred from the prefactor of
Eq. (61). Indeed, for small frequencies, while the plasmon pair
generation appears highly off-resonant, the mentioned matrix
elements diverge for ω → 0 so that the net effect manifests
as the nonmonotonic hump seen for ω � ωJP. Similarly, for
large frequencies, these matrix elements decay faster than the
growth of the density of states so that Im[χ0

�(ω)] decreases
with ω for ω � 2ωJP.
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One can intuitively think of χ0
�(ω) as the response function

when the plasmon-plasmon interactions are neglected and of
χ�(ω) as it takes into account these interactions within the
RPA (see also Appendix C). We find that the overall behavior
of χ�(ω) is similar to χ0

�(ω), except Im[χ�(ω)] is a bit en-
hanced compared to Im[χ0

�(ω)] for ω � 2ωJP [see Fig. 4(c)].
This effect originates from the fact that the attractive plasmon-
plasmon interactions can give rise to a biplasmon binding.
However, for parameters relevant for cuprate superconductors,
the binding energy is found to be negligibly small, manifest-
ing only as the mentioned enhancement of Im[χ�(ω)]. For
this reason, we will further discuss 2DTS signatures of the
biplasmon binding elsewhere. Most of our conclusions can be
intuitively understood by neglecting the plasmon interactions.

C. Plasma fluctuations in 2DTS

In this subsection, we argue that the fluctuating electro-
magnetic background, while negligible at low temperatures,
dramatically affects the 2DTS signal as T approaches Tc. In
particular, such measurements give access to the squeezing
response function χ�(ω), which is then shown to provide a
natural interpretation of experimental 2D maps. Even more
strikingly, the pulse filtering properties discussed in Sec. III
enable us to unambiguously distinguish the non-mean-field
squeezing response from the mean-field nonlinearities—this,
in turn, is argued to enable us to probe thermally excited
finite-momentum plasmons.

To mimic 2DTS experiments, we evaluate the third-order
response to current perturbations as in Eq. (44). Specifically,
a train of light pulses, Eq. (31), is now modeled via

j(t + τ ; τ ) = jA(t + τ ) + jB(t ), (62)

with

jA,B(t ) = j0�(t )e−σ t cos (ωdt ). (63)

The third-order response can be split into two contribu-
tions:

ψ (3)(t ) = ψ
(3)
mf (t ) + ψ (3)

sq (t ). (64)

The first mean-field term ψ
(3)
mf is fully analogous to that dis-

cussed in Sections II and III. Furthermore, the corresponding
nonlinear response function (see Appendix D)

χ
(3)
mf (ω1, ω2, ω3)

= �eq

6
χψ (ω1 + ω2 + ω3)χψ (ω1)χψ (ω2)χψ (ω3) (65)

can be written solely in terms of the linear response function
χψ (ω), cf. Eq. (30). Since here we consider homogeneous per-
turbations, ψ

(3)
mf encodes only a single mode with no momenta

mixing, naturally present in the preceding analysis due to the
environment-superconductor interface. Nevertheless, we find
that the resulting mean-field 2D map near Tc qualitatively
follows the discussion in Sec. III C because we use pulse
spectra that are narrower than the intrinsic broadening [see
Fig. 3(b)]—as such, the term ψ

(3)
mf cannot explain the observed

2DTS measurements for T � Tc. The second term ψ (3)
sq in

Eq. (64) is new and encodes the dynamics of a fluctuating
electromagnetic background. The corresponding third-order

response function is given by (see Appendix D):

χ (3)
sq (ω1, ω2, ω3)

= �eq

6

∑
i=1,2,3

χψ (ω1 + ω2 + ω3)

×χ�(ω1+ ω2+ ω3− ωi )χψ (ω1)χψ (ω2)χψ (ω3). (66)

Most notably, χ (3)
sq gives access to the squeezing response

function χ�(ω), which is beyond both the linear optical re-
sponse and preceding mean-field modeling. The squeezing
channel in Eq. (66) becomes relevant for 2DTS only near
Tc, where the thermal population of the plasma modes is
appreciable, cf. Eq. (50).

1. 2D maps as T approaches Tc

We now turn to discuss the unique signatures of the
non-mean-field nonlinearity χ (3)

sq in 2DTS. In contrast to the
mean-field 2D maps that feature a peak that softens following
the linear loss function, the squeezing channel manifests as
a peak centered at ωt ≈ ωτ ≈ ωd regardless of T [Fig. 5(a)].
The squeezing 2D maps exhibit (i) a dominant nonrephasing
nonlinearity and (ii) the corresponding peak positions set by
the carrier frequency ωd are independent of temperature. We
argue in the upcoming discussion how these two striking sig-
natures can serve as clear indicators to identify the presence
of strong fluctuations.

This peaked behavior can be physically understood as
follows. We first note that close to Tc, the softening of the
plasmon resonance ωJP is accompanied by a dramatic increase
in its intrinsic decay rate. As such, for γ � ωJP, reflectivity
appears featureless [Fig. 5(b)]. Therefore, even off-resonant
excitation at ωd � ωJP can launch a plasmon with the same
frequency (more generically, this could be a virtual process)
which, as we further elaborate upon in Appendix D, can act as
a Raman-like driving ∼ψ2(t ) at frequency �d = 2ωd . From
the perspective of the downconversion illustrated in Fig. 4,
this Raman drive parametrically excites counterpropagating
Josephson plasmons with frequency �d/2 = ωd (this process
can also be understood within Eq. (44), where �(t ) oscil-
lates at �d ). The squeezing nonlinearity therefore leads to
generating a continuum of plasmon pairs with the frequency
distribution set by the excitation spectrum, which determines
the peak position along the vertical axis ωτ ≈ ωd . The feature-
less reflectivity spectrum then leads to an emission spectrum
that likewise follows the excitation spectrum, centered at ωt ≈
ωd . We finally note that for ωd � ωJP, the plasmon dispersion
near ωd is barely affected by T [see Fig. 5(c)], further sup-
porting the robustness of the peak position to temperature.

2. Phenomenological model above Tc

Extending our approach to temperatures above Tc re-
quires additional considerations. There is strong experimental
evidence that in high-Tc cuprates local superconducting cor-
relations remain finite even when long-range order disappears
[68–73]. Following Refs. [54,74] we expect that in this case
one can separate slow statistical fluctuations ψ stat

n of the phase
of the order parameter and fast fluctuations ψ̃n describing
collective modes and response to electromagentic probes.
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FIG. 5. Josephson plasmon squeezing and 2D spectroscopy. (a) 2D maps of the E 2
AEB pathway of the mean-field, Eq. (65), and squeezing

channels, Eq. (66). The mean-field 2D map (left) is in agreement with Fig. (3), as it reveals an elongated shape along the ωτ axis. The squeezing
2D map (right) exhibits a resonance centered at ωt ≈ ωτ ≈ ω0

JP [the (1,1) peak], even when the plasma frequency ωJP has appreciably softened,
as evidenced by the featureless plasma edge in the linear reflectivity (b). (c) Cartoon explaining the origin of this peaked behavior. We note
that the Raman driving (see text and Fig. 4) occurs at �d = 2ωd , where ωd ≈ ω0

JP is the pulse frequency (b). While the plasmons soften as T
approaches Tc, their dispersion is barely affected near ω0

JP, in turn explaining why the squeezing peak position is not sensitive to T .

Starting from Eq. (8)(
∂2

t + γ ∂t
)(

ψ stat
n + ψ̃n

)− ∇2Lnm
(
ψ stat

m + ψ̃m
)

+�0 sin
(
ψ stat

n + ψ̃n
) = 0, (67)

one is required to average over the statistical phase fluc-
tuations ψ stat

n to obtain an effective model for ψ̃n, which
describes collective modes and terahertz electromagnetic re-
sponse. Plasmon type collective excitations are expected to
persist above Tc, but they should become gapless and have
stronger damping [50]. We expect that effective theory of such
plasmons can be captured by a model of the type(

∂2
t + γ̃ ∂t

)
ψ̃n − ∇2Lnmψ̃m + �̃4ψ̃

3
n = 0. (68)

Linearized form of Eq. (68) gives a linearly dispersing mode
at small momenta, and the last term describes nonlinear inter-
action between plasmons.

It is useful to note that Eq. (68) can not be obtained by
simply setting �0 to zero in Eq. (8). While the latter naive
approach gives a gapless plasmon spectrum, it results in van-
ishing nonlinear interaction between plasmons, Eqs. (65) and
(66). We postpone detailed discussion of plasmons in the
pseudogap regime until future publication.

3. Disentangling the non-mean-field nonlinearity

We note that for a wide variety of parameters the mean-
field rephasing nonlinearity may obscure the squeezing

contribution, as can be seen in Fig. 5 and further expanded
upon below in the context of third harmonic generation. An
exciting possibility, rather unique to 2DTS, is to exploit the
filtering effect of the excitation pulse spectrum discussed in
Sec. III A to unambiguously disentangle the non-mean-field
response χ (3)

sq from the mean-field one χ
(3)
mf (see Fig. 6). In-

deed, following our discussion in Sec. III C, we expect that
tuning the carrier frequency ωd [Fig. 6(a)] will result in a
vertical shift of the nonrephasing mean-field nonlinearity ac-
cording to ωτ ≈ ωd [Fig. 6(b)], provided the pulse frequency
profile has appreciable spectral overlap with the loss function.
At the same time, as follows from the preceding discussion,
the squeezing peak is locked to ωt ≈ ωτ ≈ ωd and, thus, upon
tuning ωd , will shift diagonally [Fig. 6(b)], thereby separating
the two responses from each other.

4. Probing finite-momentum thermal fluctuations

This capability of 2DTS to disentangle the squeezing non-
linearity can then be used to extract useful information about
thermally excited plasmons at finite momentum. Intuitively
one expects, and we demonstrate this below, that a careful
analysis of the nonrephasing nonlinearity (see Fig. 6) gives
access to N (ωd ) × D̄ψψ

ωd
, where N (ωd ) is the plasmon density

of states at ωd and D̄ψψ
ε is the plasmon thermal equilibrium

fluctuations at energy ωd .
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FIG. 6. Disentangling the mean-field and non-mean-field nonlinearities. (a) Sketch of a carrier frequency ωd sweep for fixed pulse width
σ/ω0

JP = 0.15. The frequency sweep is represented with a transparency gradient and also indicated numerically (I–IV). (b) As ωd is tuned,
the mean-field nonlinearity drifts vertically following ωτ = ωd and ωt = ωJP. In contrast, the squeezing nonlinearity drifts diagonally and is
centered at ωτ = ωt = ωd .

To this end, we rewrite χ0
�(ω) as [cf. Eq. (C12)]:

χ0
�(ω) = −ω + 2iγ

ω + iγ

∫ ∞

0
dε

�eq N (ε) D̄ψψ
ε

ω(ω + 2iγ ) − (2ε)2
, (69)

where D̄ψψ
ε = T̃ /ε2, cf. Eq. (50), and

N (ε) = �(ε − ωJP )
(
2 + s2/λ2

ab

) λ2
abε∞

2πc2s2︸ ︷︷ ︸
≡ ν

ε. (70)

Following the preceding discussion [see also Eq. (66) and
Figs. 5 and 6], we are interested in evaluating χ0

�(ω) at around
ω = 2ωd for ωd � ωJP. We note that the denominator of the
integrand in Eq. (69) suggests that we get a Lorentzian peaked
at ε = ωd ; however, the 1/ε2-behavior of D̄ψψ

ε gives rise to a
more complicated shape of this integrand shown in Fig. 7(a)—
in fact, the contribution at small ε ≈ ωJP can obscure the
peaked behavior near ε = ωd that we are interested in. The
latter can be isolated by realising that, for γ � ωd , χ0

� can
be decomposed into a smooth and a peaked function, see
Fig. 7(a). Assuming that both N (ε) and D̄ψψ

ε vary slowly near

ε = ωd , we write

χ0
�(2ωd ) �

∫ ∞

ωJP

fs(ε, 2ωd ) dε + �eqN (ωd )D̄ψψ
ωd

×
∫ ∞

0

dε

2ωd (2ωd + i2γ ) − (2ε)2
, (71)

where we have defined the smooth part of χ0
� as

fs(ε, ω) = �eqνT
−ω2 + iγω

4ε3(ω2 + γ 2)
tanh2

(
2ε

ω

)
. (72)

Note that this is an approximate form that captures the asymp-
totic behavior (both ε → 0 and ε → ∞) of the integrand of
Eq. (69). Performing the integral over the Lorentzian, we get

χ0
�(2ωd ) �

∫ ∞

ωJP

fs(ε, 2ωd ) dε − iπ�eqN (ωd )D̄ψψ
ωd

8
√

ωd (ωd + iγ )
. (73)

We have thus shown that the response function χ0
� can be

decomposed into a smooth term
∫∞
ωJP

fs dε, that only weakly
depends on ωd , and a term that scales with N (ωd ) × D̄ψψ

ωd
. A

simple subtraction should therefore isolate the finite momen-
tum thermal fluctuations.

Filter

Filter

FIG. 7. Probing finite-momentum thermal fluctuations. (a) Real and imaginary parts of the integrand of Eq. (69) (solid) and the smooth
part fs(ε, ω) in Eq. (72) (dashed). By subtracting one from the other (b), we get a signal that is well represented by a single Lorentzian
(dashed-dotted) that carries information about N (ωd ) × D̄ψψ

ωd
. Parameters used: γ /ω0

JP = 0.5, ωd/ω
0
JP = 1, and ωJP/ω

0
JP = 0.1.
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FIG. 8. Third harmonic generation (THG). (a) Typical wave-
mixing signals (here T/Tc = 0.5) due to the mean-field and
squeezing nonlinearities appear to have a substantial spectral overlap,
which makes it difficult to isolate the squeezing channel. (b) Temper-
ature evolution of the ratio of the third harmonic spectral intensity
(integral under the shaded area II) to that of the fundamental one
(integral under the shaded area I) shows that THG becomes less
sensitive to thermally excited plasmons as T approaches Tc. The
driving frequency is fixed to ωd/ω

0
JP = 1 for all temperatures.

D. Third harmonic generation

One may also draw a comparison between 2DTS and third
harmonic generation (THG), which probes a subset of the full
nonlinearity accessible with 2DTS. THG is a powerful one-
dimensional spectroscopic technique that has been extensively
applied to study nonlinear optical properties of cuprates. Ex-
amples include investigation of striped superconductors with
intertwined orders [75], origins of light-induced superconduc-
tivity [76], out-of-plane Josephson plasmons [55,77,78], and
Higgs mode signatures [79,80]. In such experiments, pho-
toexcitation consists of a narrowband pulse centered at the
carrier frequency ωd , while the experimental observable is
light emission at 3ωd :

Esignal(t ) ∝ χ (3)(ωd , ωd , ωd )e−i3ωd t + c.c. (74)

While THG gives partial access to χ (3), we find that the
contribution of squeezing nonlinearities to THG is difficult to
separate from the mean-field one (see Fig. 8). Indeed, both
nonlinearities have similar THG spectral profiles, while the
sensitivity to thermally excited plasmons, as measured by the
third harmonic spectral weight relative to the fundamental
harmonic, decreases with temperature. This result is in full
agreement with Ref. [48] and clearly illustrates the advantage
of 2DTS in studying dynamical effects beyond mean-field
both in the context of Josephson plasmonics and beyond.

V. CONCLUSION AND OUTLOOK

In this paper we developed a theory for 2DTS of the
Josephson plasma resonance in layered superconductors. The
nonlinear electrodynamics were cast in the form of optical

susceptibility, from which explicit expressions for the 2D-
spectra were obtained.

For low temperatures, at which mean-field approxima-
tions hold, the spectra obtained remarkably follow intuition
derived from the conventional scenario of quantum level sys-
tems [59]. We demonstrated that the rephasing nonlinearity
unambiguously separates homogeneous and inhomogeneous
broadening in the impulsive limit, and that increasing temper-
ature results in spectral peaks that directly follow the softening
of the loss function.

Near the phase transition however, the breakdown of the
mean-field picture results in qualitative changes to the 2D-
spectra that are both absent in the linear optical response
and unique to collective excitations and their interactions. We
found that non-mean-field corrections to the nonlinear suscep-
tibility, such as the ones due to the parametric generation of
squeezed plasmon pairs at finite momenta, manifest as distinct
signatures in 2D-spectra and can be unambiguously isolated
by proper choice of excitation pulse spectra, paving the way
for 2DTS to be an experimental probe of finite-momentum
thermal fluctuations. By comparison, we found that third-
harmonic generation [76,78], a one-dimensional nonlinear
spectroscopy technique, is both ambiguous to the origin of
the probed optical nonlinearity and also exhibits a decreasing
sensitivity to plasma fluctuations.

This comprehensive development of a theoretical frame-
work for 2DTS of a collective excitation immediately
motivates a new range of directions for both theoretical and
experimental investigations. For example, many of the most
enigmatic quantum materials feature coupling between sev-
eral degrees of freedom [81,82], and theoretical exploration
of how these couplings between various collective excitations
manifest in 2DTS remains relatively unexplored. In this con-
text, we are particularly interested in striped superconducting
phases due to intertwined superconducting and charge (and
possibly other) orders, which exhibit frustrated linear optical
responses but have previously been shown to retain optical
nonlinearities [75].

Such theoretical development could be particularly im-
portant in the context of understanding the phenomenon
of light-induced superconductivity, interesting both funda-
mentally and technologically. In cuprates, coupling between
Josephson plasmons and particular phonon modes [40,63,83]
has proven crucial to putative nonequilibrium superconduc-
tivity, but is often poorly understood. In other instances,
metastable photo-induced superconductivity could originate
from an interplay between competing orders such as super-
conductivity and charge order [84,85]. Understanding how
various order parameters and their associated collective modes
couple will shed light on these intriguing phenomena, which
calls for a 2DTS probe to disentangle the complex underlying
physics.

Another important direction could be toward extending
the presented model to incorporate optical cavities. Reso-
nant cavities have been proposed to strongly modify the
coupling of Josephson plasmons with light [43,86] in both
interesting and functional ways, and these changes should
manifest in 2D-spectra as well [87,88]. Beyond the Josephson
plasma resonance, this is also motivated by recent experiments
demonstrating spectacular control of a phase transition using
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a terahertz cavity [89]. The specific mechanisms leading to
these effects remain uncertain however, which also calls for a
2DTS probe to clarify the underlying physics.

More broadly, we believe this work to be a valuable first
step toward a general theoretical description for 2DTS of
complex solids, and expect many of the results derived here
for the Josephson plasma resonance to apply generically for
2DTS of collective excitations. Phonons [90], magnons [91],
and charge density waves [92] are but a few examples of
such collective excitations for which nonlinearities play an
essential role, and 2DTS should provide invaluable insight
into these important systems that were previously accessi-
ble only via high-energy probes. The general principles we
demonstrate here for a model collective excitation will further
guide the design of future 2DTS experiments in targeting the
most striking effects of quantum materials.
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APPENDIX A: GENERALIZED REFLECTIVITY
PROTOCOL

This Appendix discusses that our derivations of Josephson
plasmon nonlinearities in Sec. II can be straightforwardly ex-
tended to other types of collective modes. We begin by writing
down Maxwell’s equations in the sample [8]

∇D = 0, ∇B = 0, ∇ × E = −1

c

∂B

∂t
, ∇ × H = 1

c

∂D

∂t
,

(A1)

with the constitutive relations

D = E + 4πP, H = B − 4πM, J = ∂P

∂t
+ c∇ × M.

(A2)

Taking the curl of Faraday’s law, we arrive at

∇ × ∇ × E + 1

c2

∂2E

∂t2
= −4π

c2

∂J

∂t
. (A3)

If we are interested only in the polarization response of the
system (M = 0), then for the transverse component of the
electric field we get

∇2E⊥ − 1

c2

∂2E⊥

∂t2
= 4π

c2

∂2P⊥

∂t2
. (A4)

Here, the polarization vector acts as a source for the electric
field. We now split the polarization vector into its linear part,
proportional to the electric field, and nonlinear part, contain-
ing higher orders of the electric field: P = P(1) + PNL. The

linear relation between P(1) and E (r′, t ′) can be expressed via
the response function χ (r − r′, t − t ′) as

P(1)(r, t ) =
∫

dd r′
∫ t

0
dt ′χ (r − r′, t − t ′)E (r′, t ′). (A5)

Plugging into Eq. (A3) and defining the dielectric function as
ε(r − r′, t − t ′) = δ(t − t ′)δ(r − r′) + 4πχ (t − t ′, r − r′),
we arrive at

∇ × ∇ × E + 1

c2

∂2

∂t2

∫
dd r′

∫ t

0
dt ′ ε(r − r′, t − t ′)E (r′, t ′)

= −4π

c2

∂2PNL

∂t2
(A6)

and

∇2E⊥ − 1

c2

∂2

∂t2

∫
dd r′

∫ t

0
dt ′[ε(r − r′, t − t ′)E (r′, t ′)]⊥

= 4π

c2

∂2P⊥
NL

∂t2
. (A7)

The nonlinear polarization PNL carries the complete micro-
scopic information describing any nonlinear optical process
of interest; PNL is to be obtained from the microscopic dy-
namics of the system. Restricting ourselves to the transverse
sector and henceforth dropping ⊥, we can rewrite the previous
equation in terms of the vector potential as

∇2A − 1

c2

∂2

∂t2

∫
dd r′

∫ t

0
dt ′ ε(r − r′, t − t ′)A(r′, t ′)

= −4π

c

∂PNL

∂t
. (A8)

Assuming normal incidence, the Fresnel boundary conditions
are written as

E in
z (y, t ) + E r

z (y, t ) = E t
z (y, t ) = −1

c
∂t A(r, t )|x=0,

Bin
y (y, t ) + Br

y(y, t ) = Bt
y(y, t ) = −∂xA(r, t )|x=0. (A9)

Equation (15) further yields

2E in(y, t ) =
(

∂xA(r, t ) − 1

c
∂t A(r, t )

)∣∣∣∣
x=0

and

E r (y, t ) = −1

2

(
∂xA(r, t ) + 1

c
∂t A(r, t )

)∣∣∣∣
x=0

. (A10)

The presented equations are generic and represent the starting
point for analyzing nonlinearities of many-body systems.

Following the derivation steps in Sec. II, we now illustrate
how such nonlinearities could be evaluated in practice using
as an example the nonlinear Lorentz oscillator model:(

∂2
t + �∂t − v2∂2

x + m2
)
P(x, t ) + gP3(x, t ) = E (x, t ).

(A11)

(Note that here, for P and E to have the same unit, fre-
quencies have been rescaled to be dimensionless.) We now
expand the polarization vector in powers of the electric field
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P(x, t ) = P(1)(x, t ) + P(3)(x, t ) + . . . :

(
∂2

t + �∂t − v2∂2
x + m2

)
P(1)(x, t ) = E (x, t ), (A12)(

∂2
t + �∂t − v2∂2

x + m2
)
P(3)(x, t ) = −g(P(1)(x, t ))3. (A13)

Equation (A12) yields the response function and dielectric
function to be given by

χ (k, ω) = −1

ω(ω + i�) − v2k2 − m2
,

ε(k, ω) = 1 − 4π

ω(ω + i�) − v2k2 − m2
. (A14)

The Fresnel boundary conditions for the vector potential then
result in

(
∂xA(1)(x, t ) − 1

c
∂t A

(1)(x, t )

)∣∣∣∣
x=0

= 2E in(0, t ),

(
∂xA(3)(x, t ) − 1

c
∂t A

(3)(x, t )

)∣∣∣∣
x=0

= 0. (A15)

The linear response can be related to the dielectric function
as

A(1)(x, t ) =
∫

dω

2π
Ã1(ω)eikx (ω)x−iωt , (A16)

where kx(ω) is defined through

k2
x = ω2

c2
ε(kx, ω) ≈ ω2

c2
ε(k = 0, ω) ≡ ω2

c2
ε(ω). (A17)

This approximation is justified whenever v � c, which is ex-
pected to hold for a typical solid-state system. The amplitudes
Ã(1)(ω) are determined from the boundary conditions (A15):

Ã(1)(ω) = c

iω
t (ω)Ẽ in(ω), where t (ω) = 2

1 + √
ε(ω)

.

(A18)
The linear polarization is then given by

P(1)(x, t ) �
∫

dω

2π
χ (ω)t (ω)E in(ω)eikx (ω)x−iωt , (A19)

where again we have assumed v � c and defined χ (ω) ≡
χ (k = 0, ω).

Having determined the leading harmonic P(1)(x, t ), we turn
to compute P(3)(x, t ). Since Eq. (A13) is a linear differential
equation, we easily obtain

P(3)(x, t ) = −g
∫

dω

2π

∫
dk

2π
χ (ω)eikx−iωt

∫
dω1

2π

dω2

2π

dω3

2π
2πδ(ω1 + ω2 + ω3 − ω)2πδ(kx(ω1) + kx(ω2) + kx(ω3) − k)

× [χ (ω1)t (ω1)E in(ω1)][χ (ω2)t (ω2)E in(ω2)][χ (ω3)t (ω3)E in(ω3)]. (A20)

The equation on A(3)(x, t ) is also a linear differential equation,
and therefore we can write the generic solution as

A(3)(x, t ) =
∫

dω

2π
Ã(3)(ω)eikx (ω)x−iωt + A(3)

dr (x, t ), (A21)

where

A(3)
dr (x, t ) = 4π ic

∫
dk

2π

∫
dω

2π

ωP(3)(k, ω)

ω2ε(k, ω) − k2c2
e−i(ωt−kx).

(A22)
The coefficients Ã(3)(ω) are determined from the boundary
condition (A15):

Ã(3)(ω) = −
∫

dk

2π

ω + ck

ω + ckx(ω)
A(3)

dr (k, ω). (A23)

For the ease of notations, we define ω̄ = ω1 + ω2 + ω3 and
kx(ω1, ω2, ω3) = kx(ω1) + kx(ω2) + kx(ω3). For the reflected
light at x = 0, we finally obtain

E r
3(t ) = −1

2

(
1

c
∂t A

(3)(0, t ) + ∂xA(3)(0, t )

)

= −i
∫

dω

2π

∫
dk

2π

ω[k − kx(ω)]

ω + kx(ω)
A(3)

dr (k, ω)e−iωt

=
∫

dω1

2π

∫
dω2

2π

∫
dω3

2π
e−iω̄tχ (3)(ω1, ω2, ω3)

× E in(ω1)E in(ω2)E in(ω3). (A24)

so that the third-order susceptibility is then given by

χ (3)(ω1, ω2, ω3)

= 2πg

ckx(ω1, ω2, ω3)/ω̄ + √
ε(ω̄)

[χ (ω̄)t (ω̄)][χ (ω1)t (ω1)]

× [χ (ω2)t (ω2)][χ (ω3)t (ω3)]. (A25)

APPENDIX B: EQUILIBRIUM FLUCTUATIONS WITHIN
THE GAUSSIAN APPROXIMATION

In this Appendix, we discuss the equilibrium correlation
functions obtained by self-consistently solving Eqs. (50) and
(51). To this end, it is natural to consider the following quan-
tity:

�(T̃ , C) ≡ 1

AN

∑
q,qz

D̄ψψ
q,qz

=
∫ π

−π

dqz

2π

∫ C

0

dq

2π

q T̃

q2L(qz )+�eq
,

(B1)
where C is the UV momentum cutoff. The in-plane integration
results in

�(T̃ ; C) = T̃

8π2

∫ π

−π

dqz
1

L(qz )
log

(
1 + C2L(qz )

�eq

)

� T̃

8π2

∫ π

−π

dqz
1

L(qz )
log

(C2L(qz )

�eq

)
, (B2)
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where we have assumed that C � √
�eq/ minqz [L(qz )]. The

integral over qz can also be evaluated explicitly:

�(T̃ ; C) = T̃

4πc2
0

{
b

[
log

(
2c2

0C2/�eq

b + √
b2 − 4

)
− 1

]

+
√

b2 − 4

}
, (B3)

where we have defined b ≡ 2 + s2/λ2
ab. Substituting �eq =

�0 exp(−�/2), we arrive at

�(T̃ , C) = T̃ /4πc2
0

1 − T̃ b/8πc2
0

{
b

[
log

(
2c2

0C2/�0

b + √
b2 − 4

)
− 1

]

+
√

b2 − 4

}
. (B4)

From this result, we obtain the critical temperature, i.e., where
the Josephson plasmon resonance softens to zero:

T̃c = 8πc2
0

2 + s2/λ2
ab

= 8πc2s2/λ2
ab

ε∞
(
2 + s2/λ2

ab

) . (B5)

The central result of this Appendix is Eq. (B4), which can be
used to obtain any other equilibrium observable of interest.

APPENDIX C: DYNAMICS OF TWO-POINT
CORRELATORS

Considering the perturbation given in Eq. (54), the lin-
earized equations of motion for the two-point correlators
around the equilibrium state are given by

−iωδDψψ
q,qz

= 2δDψπ
q,qz

, (C1)

−i(ω + iγ )δDψπ
q,qz

= δDππ
q,qz

− [q2L(qz ) + �eq]δDψψ
q,qz

−�eq

[
δ�0

�0
− 1

2AN

∑
k,kz

δDψψ

k,kz

]
D̄ψψ

q,qz
,

(C2)

−i(ω + 2iγ )δDππ
q,qz

= −2[q2L(qz ) + �eq ]δDψπ
q,qz

. (C3)

We observe that the last term in Eq. (C2) mixes different
momenta modes, suggesting to split the propagator of fluc-
tuations into the diagonal part

G−1
0 (ω; q, q′)

=
⎛
⎝ −iω −2 0

q2L(qz ) + �eq −i(ω + iγ ) −1
0 2[q2L(qz ) + �eq] −i(ω + 2iγ )

⎞
⎠δq,q′

(C4)

and the off-diagonal part

V (q, q′) = −�eqD̄ψψ
q

2AN

⎛
⎝0 0 0

1 0 0
0 0 0

⎞
⎠, (C5)

where

δDq = (δDψψ
q , δDψπ

q , δDππ
q

)�
, q = (q, qz ). (C6)

We also define a driving vector f as

f q(ω) = −D̄ψψ
q �eq

δ�0(ω)

�0

⎛
⎝0

1
0

⎞
⎠. (C7)

One can formally write the solution of Eqs. (C1)–(C3) as
follows:

δDk =
∑

k′

(
1

G−1
0 + V

)
k,k′

f k′

= (G0 f )k − (G0VG0 f )k + (G0VG0VG0 f )k − · · ·
=
∑

k′
G0(k, k′) f k′ −

∑
p

G0(k, p)
∑

k′′
V (p, k′′)

×
∑

k′
G0(k′′, k′) f k′ + · · · . (C8)

Since V (k, q) depends only on k and G0(k, k′) ∝ δk,k′ , we
further have

δDk = G0(k) f k − G0(k)V (k)
∑

k′
G0(k′) f k′ + G0(k)V (k)

×
∑

k′′
G0(k′′)V (k′′)

∑
k′

G0(k′) f k′ − . . . . (C9)

Summing both sides with respect to k, we get

1

AN

∑
k,kz

δDk

=
(

1 −
∑

p

G0(p)V (p) +
(∑

p

G0(p)V (p)

)2

+ · · ·
)

× 1

AN

∑
k′

G0(k′) f k′

=
(

1

1 +∑p G0(p)V (p)

)
1

AN

∑
k

G0(k) f k . (C10)

In particular, for the ψψ-component, Eq. (C10) yields

1

2AN

∑
q,qz

δDψψ
q,qz

(ω) = − χ0
�(ω)

1 − χ0
�(ω)

δ�0(ω)

�0

= −χ�(ω)
δ�0(ω)

�0
, (C11)

where

χ0
�(ω) = −ω + 2iγ

ω + iγ

1

AN

×
∑
q,qz

D̄ψψ
q,qz�eq

ω(ω + 2iγ ) − 4[q2L(qz ) + �eq]
(C12)

= − 2T̃ �eq

T̃cω(ω + iγ )
log

(
1 − i

γω

2�eq
− ω2

4�eq

)
. (C13)
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This completes our derivation of Eqs. (60) and (61) of the
main text.

APPENDIX D: THIRD-ORDER RESPONSE FUNCTION
AND PLASMA SQUEEZING

Following Sec. II, here we evaluate the third-order re-
sponse function but now take into account the dynamics of the
electromagnetic background. To mimic an incoming train of
light pulses, we consider current perturbations jz(t ) ∼ E in

z (t ),
Eq. (44), as well as perturabtions of the bare coupling constant
δ�0(t ) ∼ [E in

z (t )]2, Eq. (54). Explicit expansion to the third
order in the incoming electric field acquires the form

ψ (t ) = ψ (1)(t ) + ψ (3)(t ) + · · · , (D1)

π (t ) = π (1)(t ) + π (3)(t ) + · · · , (D2)

Dαβ
q,qz

(t ) = D̄αβ
q,qz

(t ) + Dαβ(2)
q,qz

(t ) + · · · . (D3)

Direct insertion of this expansion into Eqs. (44)–(49) gives

ψ (3)(ω)

χψ (ω)
= �eq

6
FT [(ψ (1)(t ))3]FT

[(
�eq

δ�0(t )

�0

− �eq

2AN

∑
q,qz

Dψψ (2)
q,qz

(t )

)
ψ (1)(t )

]
, (D4)

where ψ (1)(ω) = χψ (ω) jz(ω) and FT stands for the Fourier
transform. The dynamics of Dψψ (2)

q,qz follows from linearizing
Eqs. (47)–(49) on top of the equilibrium state:

−iωDψψ (2)
q,qz

= 2Dψπ (2)
q,qz

, (D5)

−i(ω + iγ )Dψπ (2)
q,qz

= Dππ (2)
q,qz

− [q2L(qz ) + �eq]Dψψ (2)
q,qz

− �eq

[
δ�0

�0
− 1

2AN

∑
k,kz

Dψψ (2)
k,kz

− 1

2
(ψ (1) ∗ ψ (1) )(ω)

]
D̄ψψ

q,qz
, (D6)

−i(ω + 2iγ )Dππ (2)
q,qz

= −2[q2L(qz ) + �eq ]Dψπ (2)
q,qz

, (D7)

where ∗ denotes convolution. The only difference between
Eqs. (D5)–(D7) and Eqs. (C1)–(C3) is that the left-hand side
of Eq. (D6) contains an additional driving term ∝ (ψ (1)(t ))2.

Employing Eq. (C11), we, thus, readily obtain

− �eq

2AN

∑
q,qz

Dψψ (2)
q,qz

(ω) = χ�(ω)�eq

[
δ�0(ω)

�0

− (ψ (1) ∗ ψ (1) )(ω)

2

]
. (D8)

Equation (D4) then yields

ψ (3)(ω)

χψ (ω)
= �eq

6
FT [(ψ (1)(t ))3]

− FT
{
FT −1

[
(1 + χ�(ω))�eq

δ�0(ω)

�0

− χ�(ω)�eq
(ψ (1) ∗ ψ (1) )(ω)

2

]
ψ (1)(t )

}
. (D9)

The third-order dynamics of ψ can be written as

ψ (3)(t ) =
∫

dω1

2π

∫
dω2

2π

∫
dω3

2π
e−i(ω1+ω2+ω3 )t

× χ (3)(ω1, ω2, ω3) jz(ω1) jz(ω2) jz(ω3)

+
∫

dω1

2π

∫
dω2

2π
e−i(ω1+ω2 )t χ̃ (3)(ω1, ω2)

δ�0(ω1) jz(ω2), (D10)

where χ (3)(ω1, ω2, ω3) = χ
(3)
mf (ω1, ω2, ω3) + χ (3)

sq (ω1, ω2,

ω3), with

χ
(3)
mf (ω1, ω2, ω3) = �eq

6
χψ (ω1 + ω2 + ω3)χψ (ω1)χψ (ω2)

× χψ (ω3),

χ (3)
sq (ω1, ω2, ω3) = �eq

6

∑
i=1,2,3

χψ (ω1 + ω2 + ω3)

× χ�(ω1 + ω2 + ω3 − ωi )χψ (ω1)

× χψ (ω2)χψ (ω3), (D11)

and

χ̃ (3)(ω1, ω2) = −�eq

�0
χψ (ω1 + ω2)[1 + χ�(ω1)]χψ (ω2).

(D12)

This completes our derivations of Eqs. (65) and (66) of the
main text.
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